Biomimetic combs as antiadhesive tools to manipulate nanofibers

Anna-Christin Joel*, Marco Meyer, Johannes Heitz, Alexander Heiss, Daesung Park, Hana Adamova, Werner Baumgartner

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)
2 Downloads (Pure)

Abstract

Nanofibrous multifunctional materials have attracted a lot of attention because of the benefits of their special structure. Despite the diverse benefits of nanofibrous materials, their inherent stickiness to any surface is a major obstacle in producing and processing such materials. There are many paragons in which biological models or elements from nature have been biomimetically adapted in various areas in order to resolve technical problems, such as the silent flight of the owl, the lotus effect, or the sticky feet of the gecko. One special example shows us how nanofibers might be handled in the future: cribellate spiders possess a specialized comb, the calamistrum, on their hindmost legs, which is used to process and assemble nanofibers into structurally complex capture threads. Within this study, we were able to prove that these fibers do not stick to the calamistrum because of a special fingerprint-like nanostructure on the comb. This structure prevents the nanofibers from smoothly adapting to the surface of the comb, thus minimizing contact and reducing the adhesive van der Waals forces between the nanofibers and surface. This leads to the spiders' ability of nonsticky processing of nanofibers for their capture threads. The successful transfer of these structures to a technical surface proved that this biological model can be adapted to optimize future tools in technical areas in which antiadhesive handling of nanofibrous materials is required.

Original languageEnglish
Pages (from-to)3395-3401
Number of pages7
JournalACS Applied Nano Materials
Volume3
Issue number4
DOIs
Publication statusPublished - 24 Apr 2020

Bibliographical note

Copyright the Publisher 2020. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.

Keywords

  • bionic
  • cribellate
  • functional morphology
  • laser-induced periodic surface structures
  • spider
  • van der Waals

Fingerprint Dive into the research topics of 'Biomimetic combs as antiadhesive tools to manipulate nanofibers'. Together they form a unique fingerprint.

Cite this