Blood group antigen recognition via the group a streptococcal m protein mediates host colonization

David M. P. De Oliveira, Lauren Hartley-Tassell, Arun Everest-Dass, Michael P. Jennings, Martina L. Sanderson-Smith, Christopher J. Day, Rebecca A. Dabbs, Thomas Ve, Bostjan Kobe, Victor Nizet, Nicolle H. Packer, Mark J. Walker, Michael P. Jennings, Martina L. Sanderson-Smith

    Research output: Contribution to journalArticlepeer-review

    22 Citations (Scopus)
    28 Downloads (Pure)


    Streptococcus pyogenes (group A streptococcus [GAS]) is responsible for over 500,000 deaths worldwide each year. The highly virulent M1T1 GAS clone is one of the most frequently isolated serotypes from streptococcal pharyngitis and invasive disease. The oral epithelial tract is a niche highly abundant in glycosylated structures, particularly those of the ABO(H) blood group antigen family. Using a high-throughput approach, we determined that a strain representative of the globally disseminated M1T1 GAS clone 5448 interacts with numerous, structurally diverse glycans. Preeminent among GAS virulence factors is the surface-expressed M protein. M1 protein showed high affinity for several terminal galactose blood group antigen structures. Deletion mutagenesis shows that M1 protein mediates glycan binding via its B repeat domains. Association of M1T1 GAS with oral epithelial cells varied significantly as a result of phenotypic differences in blood group antigen expression, with significantly higher adherence to those cells expressing H antigen structures compared to cells expressing A, B, or AB antigen structures. These data suggest a novel mechanism for GAS attachment to host cells and propose a link between host blood group antigen expression and M1T1 GAS colonization. IMPORTANCE: There has been a resurgence in group A streptococcal (GAS) invasive disease, which has been paralleled by the emergence of the highly virulent M1T1 GAS clone. Intensive research has focused on mechanisms that contribute to the invasive nature of this serotype, while the mechanisms that contribute to host susceptibility to disease and bacterial colonization and persistence are still poorly understood. The M1T1 GAS clone is frequently isolated from the throat, an environment highly abundant in blood group antigen structures. This work examined the interaction of the M1 protein, the preeminent GAS surface protein, against a wide range of host-expressed glycan structures. Our data suggest that susceptibility to infection by GAS in the oral tract may correlate with phenotypic differences in host blood group antigen expression. Thus, variations in host blood group antigen expression may serve as a selective pressure contributing to the dissemination and overrepresentation of M1T1 GAS.
    Original languageEnglish
    Article numbere02237-16
    Pages (from-to)1-12
    Number of pages12
    Issue number1
    Publication statusPublished - 24 Jan 2017

    Bibliographical note

    Copyright the Author(s) 2017. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.


    Dive into the research topics of 'Blood group antigen recognition via the group a streptococcal m protein mediates host colonization'. Together they form a unique fingerprint.

    Cite this