BOOST: a supervised approach for multiple sclerosis lesion segmentation

Mariano Cabezas*, Arnau Oliver, Sergi Valverde, Brigitte Beltran, Jordi Freixenet, Joan C. Vilanova, Lluís Ramió-Torrentà, Àlex Rovira, Xavier Lladó

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

28 Citations (Scopus)

Abstract

Background: Automatic multiple sclerosis lesion segmentation is a challenging task. An extensive analysis of the most recent techniques indicates an improvement of the results obtained when using prior knowledge and contextual information. New method: We present BOOST, a knowledge-based approach to automatically segment multiple sclerosis lesions through a voxel by voxel classification. We used the Gentleboost classifier and a set of features, including contextual features, registered atlas probability maps and an outlier map. Results: Results are computed on a set of 45 cases from three different hospitals (15 of each), obtaining a moderate agreement between the manual annotations and the automatically segmented results. Comparison with existing method(s): We quantitatively compared our results with three public state-of-the-art approaches obtaining competitive results and a better overlap with manual annotations. Our approach tends to better segment those cases with high lesion load, while cases with small lesion load are more difficult to accurately segment. Conclusions: We believe BOOST has potential applicability in the clinical practice, although it should be improved in those cases with small lesion load.

Original languageEnglish
Pages (from-to)108-117
Number of pages10
JournalJournal of Neuroscience Methods
Volume237
DOIs
Publication statusPublished - 30 Nov 2014
Externally publishedYes

Keywords

  • artificial intelligence
  • brain analysis
  • image analysis
  • magnetic resonance imaging
  • multiple sclerosis

Fingerprint

Dive into the research topics of 'BOOST: a supervised approach for multiple sclerosis lesion segmentation'. Together they form a unique fingerprint.

Cite this