Boron nitride nanotube as an antimicrobial peptide carrier: a theoretical insight

Maryam Zarghami Dehaghani, Babak Bagheri, Farrokh Yousefi, Abbasali Nasiriasayesh, Amin Hamed Mashhadzadeh*, Payam Zarrintaj, Navid Rabiee, Mojtaba Bagherzadeh, Vanessa Fierro, Alain Celzard, Mohammad Reza Saeb, Ebrahim Mostafavi*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)
2 Downloads (Pure)

Abstract

Introduction: Nanotube-based drug delivery systems have received considerable attention because of their large internal volume to encapsulate the drug and the ability to penetrate tissues, cells, and bacteria. In this regard, understanding the interaction between the drug and the nanotube to evaluate the encapsulation behavior of the drug in the nanotube is of crucial importance.

Methods: In this work, the encapsulation process of the cationic antimicrobial peptide named cRW3 in the biocompatible boron nitride nanotube (BNNT) was investigated under the Canonical ensemble (NVT) by molecular dynamics (MD) simulation.

Results: The peptide was absorbed into the BNNT by van der Waals (vdW) interaction between cRW3 and the BNNT, in which the vdW interaction decreased during the simulation process and reached the value of −142.7 kcal·mol−1 at 4 ns.

Discussion: The increase in the potential mean force profile of the encapsulated peptide during the pulling process of cRW3 out of the nanotube showed that its insertion into the BNNT occurred spontaneously and that the inserted peptide had the desired stability. The energy barrier at the entrance of the BNNT caused a pause of 0.45 ns when half of the peptide was inside the BNNT during the encapsulation process. Therefore, during this period, the peptide experienced the weakest movement and the smallest conformational changes.

Original languageEnglish
Pages (from-to)1837-1847
Number of pages11
JournalInternational Journal of Nanomedicine
Volume16
DOIs
Publication statusPublished - 2021
Externally publishedYes

Bibliographical note

Copyright the Author(s) 2021. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.

Keywords

  • boron nitride nanotube
  • drug delivery
  • antimicrobial peptide
  • molecular dynamic simulation
  • encapsulation

Fingerprint

Dive into the research topics of 'Boron nitride nanotube as an antimicrobial peptide carrier: a theoretical insight'. Together they form a unique fingerprint.
  • Novel nanocarriers for drug delivery applications

    Rabiee, N., Ghadiri, A. M., Safarkhani, M., Fatahi, Y., Kiani, M., Ahmadi, S., Mozafari, M., Saeb, M. R., Makvandi, P., Hamblin, M. R., Varma, R. S., Rabiee, M., Mostafavi, E., Zarrintaj, P., Hamed Mashhadzadeh, A., Tahriri, M., Tayebi, L. & Shokouhimehr, M.

    10/09/18 → …

    Project: Research

Cite this