Boundedness criterion for integral operators on the fractional Fock-Sobolev spaces

Guangfu Cao, Li He, Ji Li, Minxing Shen

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

We provide a boundedness criterion for the integral operator Sϕ on the fractional Fock–Sobolev space Fs,2(Cn) , s≥ 0 , where Sϕ (introduced by Zhu [18]) is given by SϕF(z):=∫CnF(w)ez·w¯ϕ(z-w¯)dλ(w) with ϕ in the Fock space F2(Cn) and dλ(w):=π-ne-|w|2dw the Gaussian measure on the complex space Cn. This extends the recent result in Cao et al. (Adv Math 363: 107001, 33 pp, 2020). The main approach is to develop multipliers on the fractional Hermite–Sobolev space WHs,2(Rn).
Original languageEnglish
Pages (from-to)3671–3693
Number of pages23
JournalMathematische Zeitschrift
Volume301
Issue number4
DOIs
Publication statusPublished - 1 Aug 2022

Keywords

  • Fock–Sobolev space
  • Hermite–Sobolev space
  • Integral operator
  • Hermite operator
  • Bargmann transform

Fingerprint

Dive into the research topics of 'Boundedness criterion for integral operators on the fractional Fock-Sobolev spaces'. Together they form a unique fingerprint.

Cite this