Projects per year
Abstract
We provide a boundedness criterion for the integral operator Sϕ on the fractional Fock–Sobolev space Fs,2(Cn) , s≥ 0 , where Sϕ (introduced by Zhu [18]) is given by SϕF(z):=∫CnF(w)ez·w¯ϕ(z-w¯)dλ(w) with ϕ in the Fock space F2(Cn) and dλ(w):=π-ne-|w|2dw the Gaussian measure on the complex space Cn. This extends the recent result in Cao et al. (Adv Math 363: 107001, 33 pp, 2020). The main approach is to develop multipliers on the fractional Hermite–Sobolev space WHs,2(Rn).
Original language | English |
---|---|
Pages (from-to) | 3671–3693 |
Number of pages | 23 |
Journal | Mathematische Zeitschrift |
Volume | 301 |
Issue number | 4 |
DOIs | |
Publication status | Published - 1 Aug 2022 |
Keywords
- Fock–Sobolev space
- Hermite–Sobolev space
- Integral operator
- Hermite operator
- Bargmann transform
Fingerprint
Dive into the research topics of 'Boundedness criterion for integral operators on the fractional Fock-Sobolev spaces'. Together they form a unique fingerprint.Projects
- 1 Active
-
DP22: Harmonic analysis of Laplacians in curved spaces
Li, J., Bui, T., Duong, X., Cowling, M., Ottazzi, A. & Wick, B.
26/04/22 → 25/04/25
Project: Research