TY - JOUR
T1 - Broad-band, radio spectro-polarimetric study of 100 radiative-mode and jet-mode AGN
AU - O'Sullivan, S. P.
AU - Purcell, C. R.
AU - Anderson, C. S.
AU - Farnes, J. S.
AU - Sun, X. H.
AU - Gaensler, B. M.
PY - 2017/8
Y1 - 2017/8
N2 - We present the results from a broad-band (1 to 3 GHz), spectro-polarimetry study of the integrated emission from 100 extragalactic radio sources with the Australia Telescope Compact Array, selected to be highly linearly polarized at 1.4 GHz. We use a general-purpose, polarization model-fitting procedure that describes the Faraday rotation measure (RM) and intrinsic polarization structure of up to three distinct polarized emission regions or 'RM components' of a source. Overall, 37 per cent/52 per cent/11 per cent of sources are best fitted by one/two/three RM components. However, these fractions are dependent on the signal-to-noise ratio (S/N) in polarization (more RM components more likely at higher S/N). In general, our analysis shows that sources with high integrated degrees of polarization at 1.4 GHz have low Faraday depolarization, are typically dominated by a single RM component, have a steep spectral index and have a high intrinsic degree of polarization. After classifying our sample into radiative-mode and jet-mode AGN, we find no significant difference between the Faraday rotation or Faraday depolarization properties of jet-mode and radiative-mode AGN. However, there is a statistically significant difference in the intrinsic degree of polarization between the two types, with the jet-mode sources having more intrinsically ordered magnetic field structures than the radiative-mode sources. We also find a preferred perpendicular orientation of the intrinsic magnetic field structure of jet-mode AGN with respect to the jet direction, while no clear preference is found for the radiative-mode sources.
AB - We present the results from a broad-band (1 to 3 GHz), spectro-polarimetry study of the integrated emission from 100 extragalactic radio sources with the Australia Telescope Compact Array, selected to be highly linearly polarized at 1.4 GHz. We use a general-purpose, polarization model-fitting procedure that describes the Faraday rotation measure (RM) and intrinsic polarization structure of up to three distinct polarized emission regions or 'RM components' of a source. Overall, 37 per cent/52 per cent/11 per cent of sources are best fitted by one/two/three RM components. However, these fractions are dependent on the signal-to-noise ratio (S/N) in polarization (more RM components more likely at higher S/N). In general, our analysis shows that sources with high integrated degrees of polarization at 1.4 GHz have low Faraday depolarization, are typically dominated by a single RM component, have a steep spectral index and have a high intrinsic degree of polarization. After classifying our sample into radiative-mode and jet-mode AGN, we find no significant difference between the Faraday rotation or Faraday depolarization properties of jet-mode and radiative-mode AGN. However, there is a statistically significant difference in the intrinsic degree of polarization between the two types, with the jet-mode sources having more intrinsically ordered magnetic field structures than the radiative-mode sources. We also find a preferred perpendicular orientation of the intrinsic magnetic field structure of jet-mode AGN with respect to the jet direction, while no clear preference is found for the radiative-mode sources.
KW - techniques: polarimetric
KW - galaxies: active
KW - galaxies: jet
KW - galaxies: magnetic fields
KW - radio continuum: galaxies
UR - http://www.scopus.com/inward/record.url?scp=85044030641&partnerID=8YFLogxK
U2 - 10.1093/mnras/stx1133
DO - 10.1093/mnras/stx1133
M3 - Article
SN - 0035-8711
VL - 469
SP - 4034
EP - 4062
JO - Monthly Notices of the Royal Astronomical Society
JF - Monthly Notices of the Royal Astronomical Society
IS - 4
ER -