TY - JOUR
T1 - Carbon and nitrogen stocks in dead wood of tropical lowland forests as dependent on wood decay stages and land-use intensity
AU - Meriem, Selis
AU - Tjitrosoedirjo, Soekisman
AU - Kotowska, Martyna M.
AU - Hertel, Dietrich
AU - Triadiati, Triadiati
PY - 2016
Y1 - 2016
N2 - Rapid transformation of natural forests into other land-use systems in the lowlands of Sumatra, Indonesia, strongly reduces total aboveground biomass and affects nutrient cycling. However, the consequences of this conversion for C and N stocks of dead wood remains poorly understood particularly in natural forests and jungle rubber. This study examined the differences in dead wood abundance, mass, and C, N and lignin concentrations of three decay stages of dead wood as well as the stocks of these chemical components stored in dead wood. Standing and fallen dead wood was determined as coarse woody debris with diameter ≥ 10 cm and classified into three decay stages of wood. Mass of dead wood was estimated using allometric equation. Total C and N stocks in dead wood in the natural forests (4.5 t C ha-1, 0.05 t N ha-1, respectively) were three times higher than those in the jungle rubber (1.5 t C ha-1, 0.02 t N ha-1, respectively). The stocks of C and N at early and advanced wood decay stages in the natural forests were also higher than those in the jungle rubber. The decay stages showed pronounced differences in concentrations of chemical components. With advancing stage of wood decay, N concentration increased and C/N ratio decreased, while concentrations of C and lignin were variable. The distribution of dead wood mass and stocks of C, and lignin were found to be higher in the early decay than those in the advanced decay stage. Higher input of dead wood in natural forests indicated a higher importance of dead wood decay in natural forests than in jungle rubber systems. Thus, replacing natural forests with jungle rubber strongly reduces total C and N stocks which might have a marked negative effect on the ecosystems’ nutrient turnover and cycle.
AB - Rapid transformation of natural forests into other land-use systems in the lowlands of Sumatra, Indonesia, strongly reduces total aboveground biomass and affects nutrient cycling. However, the consequences of this conversion for C and N stocks of dead wood remains poorly understood particularly in natural forests and jungle rubber. This study examined the differences in dead wood abundance, mass, and C, N and lignin concentrations of three decay stages of dead wood as well as the stocks of these chemical components stored in dead wood. Standing and fallen dead wood was determined as coarse woody debris with diameter ≥ 10 cm and classified into three decay stages of wood. Mass of dead wood was estimated using allometric equation. Total C and N stocks in dead wood in the natural forests (4.5 t C ha-1, 0.05 t N ha-1, respectively) were three times higher than those in the jungle rubber (1.5 t C ha-1, 0.02 t N ha-1, respectively). The stocks of C and N at early and advanced wood decay stages in the natural forests were also higher than those in the jungle rubber. The decay stages showed pronounced differences in concentrations of chemical components. With advancing stage of wood decay, N concentration increased and C/N ratio decreased, while concentrations of C and lignin were variable. The distribution of dead wood mass and stocks of C, and lignin were found to be higher in the early decay than those in the advanced decay stage. Higher input of dead wood in natural forests indicated a higher importance of dead wood decay in natural forests than in jungle rubber systems. Thus, replacing natural forests with jungle rubber strongly reduces total C and N stocks which might have a marked negative effect on the ecosystems’ nutrient turnover and cycle.
KW - Carbon and nitrogen stocks
KW - Dead wood mass
KW - Decay stages
KW - Nutrient changes
UR - http://www.scopus.com/inward/record.url?scp=85007275974&partnerID=8YFLogxK
U2 - 10.15287/afr.2016.524
DO - 10.15287/afr.2016.524
M3 - Article
AN - SCOPUS:85007275974
SN - 1844-8135
VL - 59
SP - 299
EP - 310
JO - Annals of Forest Research
JF - Annals of Forest Research
IS - 2
ER -