Carbon costs and benefits of Indonesian rainforest conversion to plantations

Thomas Guillaume*, Martyna M. Kotowska, Dietrich Hertel, Alexander Knohl, Valentyna Krashevska, Kukuh Murtilaksono, Stefan Scheu, Yakov Kuzyakov

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

125 Citations (Scopus)
58 Downloads (Pure)

Abstract

Land-use intensification in the tropics plays an important role in meeting global demand for agricultural commodities but generates high environmental costs. Here, we synthesize the impacts of rainforest conversion to tree plantations of increasing management intensity on carbon stocks and dynamics. Rainforests in Sumatra converted to jungle rubber, rubber, and oil palm monocultures lost 116 Mg C ha-1, 159 Mg C ha-1, and 174 Mg C ha-1, respectively. Up to 21% of these carbon losses originated from belowground pools, where soil organic matter still decreases a decade after conversion. Oil palm cultivation leads to the highest carbon losses but it is the most efficient land use, providing the lowest ratio between ecosystem carbon storage loss or net primary production (NPP) decrease and yield. The imbalanced sharing of NPP between short-term human needs and maintenance of long-term ecosystem functions could compromise the ability of plantations to provide ecosystem services regulating climate, soil fertility, water, and nutrient cycles.

Original languageEnglish
Article number2388
Pages (from-to)1-11
Number of pages11
JournalNature Communications
Volume9
Issue number1
DOIs
Publication statusPublished - 19 Jun 2018
Externally publishedYes

Bibliographical note

Copyright the Author(s) 2018. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.

Fingerprint

Dive into the research topics of 'Carbon costs and benefits of Indonesian rainforest conversion to plantations'. Together they form a unique fingerprint.

Cite this