TY - JOUR
T1 - Central CO2 chemoreception and integrated neural mechanisms of cardiovascular and respiratory control
AU - Guyenet, Patrice
AU - Stornetta, Ruth
AU - Abbott, Stephen
AU - Depuy, Seth
AU - Fortuna, Michal
AU - Kanbar, Roy
PY - 2010
Y1 - 2010
N2 - In this review, we ex-amine why blood pressure (BP) and sympathetic nerve activity (SNA) increase during a rise in central nervous system. (CNS) Pco 2 (central chemoreceptor stimulation). CNS acidification modifies SNA by two classes of mechanisms. The first one depends on the activation of the central respiratory controller (CRG) and causes the much-emphasized respiratory modulation of the SNA. The CRG prob-ably modulates SNA at several brain stem or spinal locations, but the most important site of interaction seems to be the caudal ventrolateral medulla (CVLM), where unidentified components of the CRG periodically gate the baroreflex. CNS Pco2 also influences sympathetic tone in a CRG-independent manner, and we propose that this process operates differently according to the level of CNS Pco2. In normocapnia and indeed even below the ventilatory recruitment threshold, CNS Pco2 exerts a tonic concentration-dependent excitatory effect on SNA that is plausibly mediated by specialized brain stem chemoreceptors such as the retrotrap-ezoid nucleus. Abnormally high levels of Pco2 cause an aversive interoceptive awareness in awake individuals and trigger arousal from sleep. These alerting responses presumably activate wake-promoting and/or stress-related pathways such as the orexinergic, noradrenergic, and serotonergic neurons. These neuronal groups, which may also be directly activated by brain acidification, have brainwide projections that contribute to the CO 2-induced rise in breathing and SNA by facilitating neuronal activity at innumerable CNS locations. In the case of SNA, these sites include the nucleus of the solitary tract, the ventrolateral medulla, and the preganglionic neurons.
AB - In this review, we ex-amine why blood pressure (BP) and sympathetic nerve activity (SNA) increase during a rise in central nervous system. (CNS) Pco 2 (central chemoreceptor stimulation). CNS acidification modifies SNA by two classes of mechanisms. The first one depends on the activation of the central respiratory controller (CRG) and causes the much-emphasized respiratory modulation of the SNA. The CRG prob-ably modulates SNA at several brain stem or spinal locations, but the most important site of interaction seems to be the caudal ventrolateral medulla (CVLM), where unidentified components of the CRG periodically gate the baroreflex. CNS Pco2 also influences sympathetic tone in a CRG-independent manner, and we propose that this process operates differently according to the level of CNS Pco2. In normocapnia and indeed even below the ventilatory recruitment threshold, CNS Pco2 exerts a tonic concentration-dependent excitatory effect on SNA that is plausibly mediated by specialized brain stem chemoreceptors such as the retrotrap-ezoid nucleus. Abnormally high levels of Pco2 cause an aversive interoceptive awareness in awake individuals and trigger arousal from sleep. These alerting responses presumably activate wake-promoting and/or stress-related pathways such as the orexinergic, noradrenergic, and serotonergic neurons. These neuronal groups, which may also be directly activated by brain acidification, have brainwide projections that contribute to the CO 2-induced rise in breathing and SNA by facilitating neuronal activity at innumerable CNS locations. In the case of SNA, these sites include the nucleus of the solitary tract, the ventrolateral medulla, and the preganglionic neurons.
KW - Cardiorespiratory integration
KW - Central chemoreceptors
U2 - 10.1152/japplphysiol.00712.2009
DO - 10.1152/japplphysiol.00712.2009
M3 - Article
C2 - 20075262
SN - 8750-7587
VL - 108
SP - 995
EP - 1002
JO - Journal of Applied Physiology
JF - Journal of Applied Physiology
IS - 4
ER -