TY - JOUR
T1 - Characterization of autofluorescence and quantitative protoporphyrin IX biomarkers for optical spectroscopy-guided glioma surgery
AU - Black, David
AU - Kaneko, Sadahiro
AU - Walke, Anna
AU - König, Simone
AU - Stummer, Walter
AU - Suero Molina, Eric
N1 - Copyright the Author(s) 2021. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.
PY - 2021/10/8
Y1 - 2021/10/8
N2 - 5-Aminolevulinic acid (5-ALA)-mediated fluorescence does not effectively depict low grade gliomas (LGG) or the infiltrative tumor portion of high-grade gliomas (HGG). While spectroscopy improves sensitivity and precision, this is currently limited by autofluorescence and a second protoporphyrin IX (PpIX) fluorescence state at 620 nm. We investigated the autofluorescence to better characterize the present spectra and thus increase PpIX quantification precision and sensitivity. This study included 128 patients undergoing surgery for malignant glioma. 5-ALA (Gliolan) was administered before anesthesia, and fluorescence was measured using a hyperspectral device. It was found that all 2692 measured spectra consisted of contributions from 620 to 634 nm PpIX, NADH, lipofuscin, and flavins. The basis spectra were characterized and their use in spectral unmixing led to 82.4% lower fitting error for weakly fluorescing areas (p < 0.001), and 92.3% fewer false positive tumor identifications in control measurements (p = 0.0065) compared to previous works. They also decreased the PpIX620 contribution, thus halving the mean Ratio620/634 (p < 0.001). The ratio was approximately 0 for HGGs and increasing for LGGs, as demonstrated previously. Additionally, the Ratio620/634, the MIB-1/Ki-67 proliferation index, and the PpIX peak blue-shift were found to be significantly related to WHO grade, fluorescence visibility, and PpIX contribution (p < 0.001), and the value of these three as quantitative biomarkers is discussed.
AB - 5-Aminolevulinic acid (5-ALA)-mediated fluorescence does not effectively depict low grade gliomas (LGG) or the infiltrative tumor portion of high-grade gliomas (HGG). While spectroscopy improves sensitivity and precision, this is currently limited by autofluorescence and a second protoporphyrin IX (PpIX) fluorescence state at 620 nm. We investigated the autofluorescence to better characterize the present spectra and thus increase PpIX quantification precision and sensitivity. This study included 128 patients undergoing surgery for malignant glioma. 5-ALA (Gliolan) was administered before anesthesia, and fluorescence was measured using a hyperspectral device. It was found that all 2692 measured spectra consisted of contributions from 620 to 634 nm PpIX, NADH, lipofuscin, and flavins. The basis spectra were characterized and their use in spectral unmixing led to 82.4% lower fitting error for weakly fluorescing areas (p < 0.001), and 92.3% fewer false positive tumor identifications in control measurements (p = 0.0065) compared to previous works. They also decreased the PpIX620 contribution, thus halving the mean Ratio620/634 (p < 0.001). The ratio was approximately 0 for HGGs and increasing for LGGs, as demonstrated previously. Additionally, the Ratio620/634, the MIB-1/Ki-67 proliferation index, and the PpIX peak blue-shift were found to be significantly related to WHO grade, fluorescence visibility, and PpIX contribution (p < 0.001), and the value of these three as quantitative biomarkers is discussed.
UR - http://www.scopus.com/inward/record.url?scp=85116804682&partnerID=8YFLogxK
U2 - 10.1038/s41598-021-99228-6
DO - 10.1038/s41598-021-99228-6
M3 - Article
C2 - 34625597
SN - 2045-2322
VL - 11
SP - 1
EP - 12
JO - Scientific Reports
JF - Scientific Reports
IS - 1
M1 - 20009
ER -