TY - JOUR
T1 - Characterization of cuttlebone for a biomimetic design of cellular structures
AU - Cadman, Joseph
AU - Zhou, Shiwei
AU - Chen, Yuhang
AU - Li, Wei
AU - Appleyard, Richard
AU - Li, Qing
PY - 2010/3
Y1 - 2010/3
N2 - Cuttlebone is a natural material possessing the multifunctional properties of high porosity, high flexural stiffness and compressive strength, making it a fine example of design optimization of cellular structures created by nature. Examination of cuttlebone using scanning electron microscopy (SEM) reveals an approximately periodic microstructure, appropriate for computational characterization using direct homogenization techniques. In this paper, volume fractions and stiffness tensors were determined based on two different unit cell models that were extracted from two different cuttlefish samples. These characterized results were then used as the target values in an inverse homogenization procedure aiming to re-generate microstructures with the same properties as cuttlebone. Unit cells with similar topologies to the original cuttlebone unit cells were achieved, attaining the same volume fraction (i.e. bulk density) and the same (or very close) stiffness tensor. In addition, a range of alternate unit cell topologies were achieved also attaining the target properties, revealing the non-unique nature of this inverse homogenization problem.
AB - Cuttlebone is a natural material possessing the multifunctional properties of high porosity, high flexural stiffness and compressive strength, making it a fine example of design optimization of cellular structures created by nature. Examination of cuttlebone using scanning electron microscopy (SEM) reveals an approximately periodic microstructure, appropriate for computational characterization using direct homogenization techniques. In this paper, volume fractions and stiffness tensors were determined based on two different unit cell models that were extracted from two different cuttlefish samples. These characterized results were then used as the target values in an inverse homogenization procedure aiming to re-generate microstructures with the same properties as cuttlebone. Unit cells with similar topologies to the original cuttlebone unit cells were achieved, attaining the same volume fraction (i.e. bulk density) and the same (or very close) stiffness tensor. In addition, a range of alternate unit cell topologies were achieved also attaining the target properties, revealing the non-unique nature of this inverse homogenization problem.
UR - http://www.scopus.com/inward/record.url?scp=77249146355&partnerID=8YFLogxK
U2 - 10.1007/s10409-009-0310-2
DO - 10.1007/s10409-009-0310-2
M3 - Article
AN - SCOPUS:77249146355
SN - 0567-7718
VL - 26
SP - 27
EP - 35
JO - Acta Mechanica Sinica/Lixue Xuebao
JF - Acta Mechanica Sinica/Lixue Xuebao
IS - 1
ER -