Abstract
The isotopic and geochemical characteristics of PGE mineralization in high-Mg chromitite from the banded dunite–wehrlite–clinopyroxenite complex of the Nurali lherzolite massif, the South Urals, Russia is characterized for the first time. Electron microprobe analysis and LA MC-ICP-MS mass spectrometry are used for studying Cr-spinel and platinum-group minerals (PGM). Two processes synchronously develop in high-Mg chromitite subject to metamorphism: (1) the replacement of Mg–Al-rich Cr-spinel, orthopyroxene, and diopside by chromite, Cr-amphibole, chlorite, and garnet; (2) the formation of a secondary mineral assemblage consisting of finely dispersed ruthenium or Ru-hexaferrum aggregate and silicate–oxide or silicate matter on the location of primary Ru–Os-sulfides of the laurite–erlichmanite solid solution series. Similar variations of Os-isotopic composition in both primary and secondary PGM assemblages are evidence for the high stability of the Os isotope system in PGM and for the possibility of using model 187Os/188Os ages in geodynamic reconstructions.
Original language | English |
---|---|
Pages (from-to) | 1-19 |
Number of pages | 19 |
Journal | Geology of Ore Deposits |
Volume | 58 |
Issue number | 1 |
DOIs | |
Publication status | Published - 1 Jan 2016 |