Abstract
We demonstrate a Kerr-lens mode-locked Ti:sapphire oscillator that generates 130-nJ, 26-fs and 220-nJ, 30-fs pulses at a repetition rate of 11 MHz. The generation of stable broadband, high-energy pulses from an extended-cavity oscillator is achieved by the use of chirped multilayer mirrors to produce a small net positive dispersion over a broad spectral range. The resultant chirped picosecond pulses are compressed by a dispersive delay line that is external to the laser cavity. The demonstrated peak powers, in excess of 5 MW, are to our knowledge the highest ever achieved from a cw-pumped laser and are expected to be scalable to tens of megawatts by an increase in the pump power and (or) a decrease in the repetition rate. The demonstrated source permits micromachining of any materials under relaxed focusing conditions.
Original language | English |
---|---|
Pages (from-to) | 1366-1368 |
Number of pages | 3 |
Journal | Optics Letters |
Volume | 29 |
Issue number | 12 |
DOIs | |
Publication status | Published - 15 Jun 2004 |
Externally published | Yes |