Chronic bilateral renal denervation attenuates renal injury in a transgenic rat model of diabetic nephropathy

Yimin Yao, Ingrid C. Fomison-Nurse, Joanne C. Harrison, Robert J. Walker, Gerard Davis, Ivan A. Sammut

    Research output: Contribution to journalArticlepeer-review

    21 Citations (Scopus)

    Abstract

    Bilateral renal denervation (BRD) has been shown to reduce hypertension and improve renal function in both human and experimental studies. We hypothesized that chronic intervention with BRD may also attenuate renal injury and fibrosis in diabetic nephropathy. This hypothesis was examined in a female streptozotocin-induced diabetic (mRen-2)27 rat (TGR) shown to capture the cardinal features of human diabetic nephropathy. Following diabetic induction, BRD/sham surgeries were conducted repeatedly (at the week 3, 6, and 9 following induction) in both diabetic and normoglycemic animals. Renal denervation resulted in a progressive decrease in systolic blood pressure from first denervation to termination (at 12 wk post-diabetic induction) in both normoglycemic and diabetic rats. Renal norepinephrine content was significantly raised following diabetic induction and ablated in denervated normoglycemic and diabetic groups. A significant increase in glomerular basement membrane thickening and mesangial expansion was seen in the diabetic kidneys; this morphological appearance was markedly reduced by BRD. Immunohistochemistry and protein densitometric analysis of diabetic innervated kidneys confirmed the presence of significantly increased levels of collagens I and IV, α-smooth muscle actin, the ANG II type 1 receptor, and transforming growth factor-β. Renal denervation significantly reduced protein expression of these fibrotic markers. Furthermore, BRD attenuated albuminuria and prevented the loss of glomerular podocin expression in these diabetic animals. In conclusion, BRD decreases systolic blood pressure and reduces the development of renal fibrosis, glomerulosclerosis, and albuminuria in this model of diabetic nephropathy. The evidence presented strongly suggests that renal denervation may serve as a therapeutic intervention to attenuate the progression of renal injury in diabetic nephropathy.

    Original languageEnglish
    Pages (from-to)F251–F262
    Number of pages12
    JournalAmerican Journal of Physiology - Renal Physiology
    Volume307
    Issue number3
    DOIs
    Publication statusPublished - 1 Aug 2014

    Keywords

    • (mRen-2)27 rat
    • Diabetic nephropathy
    • Fibrosis
    • Renal denervation

    Fingerprint

    Dive into the research topics of 'Chronic bilateral renal denervation attenuates renal injury in a transgenic rat model of diabetic nephropathy'. Together they form a unique fingerprint.

    Cite this