TY - JOUR
T1 - Co-abundance analysis reveals hidden players associated with high methane yield phenotype in sheep rumen microbiome
AU - Ghanbari Maman, Leila
AU - Palizban, Fahimeh
AU - Fallah Atanaki, Fereshteh
AU - Elmi Ghiasi, Naser
AU - Ariaeenejad, Shohreh
AU - Ghaffari, Mohammad Reza
AU - Hosseini Salekdeh, Ghasem
AU - Kavousi, Kaveh
N1 - Copyright the Author(s) 2020. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.
PY - 2020/3/19
Y1 - 2020/3/19
N2 - Rumen microbial environment hosts a variety of microorganisms that interact with each other to carry out the feed digestion and generation of several by-products especially methane, which plays an essential role in global warming as a greenhouse gas. However, due to its multi-factorial nature, the exact cause of methane production in the rumen has not yet been fully determined. The current study is an attempt to use system modeling to analyze the relationship between interacting components of rumen microbiome and its role in methane production. Metagenomic data of sheep rumen, with equal numbers of high methane yield (HMY) and low methane yield (LMY) samples, were used. As a well-known approach for the systematic comparative study of complex traits, the co-abundance networks were constructed in both operational taxonomic unit (OTU) and gene levels. A gene-catalog of 1,444 different rumen microbial strains was developed as a reference to measure gene abundances. The results from both types of co-abundance networks showed that methanogens, which are the main ruminal source for methanogenesis, need other microbial species to accomplish the task of methane production through producing the main precursor molecules like H2 and acetate for methanogenesis pathway as their byproducts. KEGG Orthology(KO) analysis of the current study shows that the metabolism and growth rate of methanogens will be increased due to the higher rate of the metabolism and carbohydrate/fiber digestion pathways in the hidden elements. This finding proposes that any ruminant methane yield alteration strategy should consider complex interactions of rumen microbiome components as one tightly integrated unit rather than several separate parts.
AB - Rumen microbial environment hosts a variety of microorganisms that interact with each other to carry out the feed digestion and generation of several by-products especially methane, which plays an essential role in global warming as a greenhouse gas. However, due to its multi-factorial nature, the exact cause of methane production in the rumen has not yet been fully determined. The current study is an attempt to use system modeling to analyze the relationship between interacting components of rumen microbiome and its role in methane production. Metagenomic data of sheep rumen, with equal numbers of high methane yield (HMY) and low methane yield (LMY) samples, were used. As a well-known approach for the systematic comparative study of complex traits, the co-abundance networks were constructed in both operational taxonomic unit (OTU) and gene levels. A gene-catalog of 1,444 different rumen microbial strains was developed as a reference to measure gene abundances. The results from both types of co-abundance networks showed that methanogens, which are the main ruminal source for methanogenesis, need other microbial species to accomplish the task of methane production through producing the main precursor molecules like H2 and acetate for methanogenesis pathway as their byproducts. KEGG Orthology(KO) analysis of the current study shows that the metabolism and growth rate of methanogens will be increased due to the higher rate of the metabolism and carbohydrate/fiber digestion pathways in the hidden elements. This finding proposes that any ruminant methane yield alteration strategy should consider complex interactions of rumen microbiome components as one tightly integrated unit rather than several separate parts.
UR - http://www.scopus.com/inward/record.url?scp=85082049576&partnerID=8YFLogxK
U2 - 10.1038/s41598-020-61942-y
DO - 10.1038/s41598-020-61942-y
M3 - Article
C2 - 32193482
AN - SCOPUS:85082049576
SN - 2045-2322
VL - 10
JO - Scientific Reports
JF - Scientific Reports
M1 - 4995
ER -