Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma

Christian P. Kubicek*, Alfredo Herrera-Estrella, Verena Seidl-Seiboth, Diego A. Martinez, Irina S. Druzhinina, Michael Thon, Susanne Zeilinger, Sergio Casas-Flores, Benjamin A. Horwitz, Prasun K. Mukherjee, Mala Mukherjee, László Kredics, Luis D. Alcaraz, Andrea Aerts, Zsuzsanna Antal, Lea Atanasova, Mayte G. Cervantes-Badillo, Jean Challacombe, Olga Chertkov, Kevin McCluskeyFanny Coulpier, Nandan Deshpande, Hans von Döhren, Daniel J. Ebbole, Edgardo U. Esquivel-Naranjo, Erzsébet Fekete, Michel Flipphi, Fabian Glaser, Elida Y. Gómez-Rodríguez, Sabine Gruber, Cliff Han, Bernard Henrissat, Rosa Hermosa, Miguel Hernández-Oñate, Levente Karaffa, Idit Kosti, Stéphane Le Crom, Erika Lindquist, Susan Lucas, Mette Lübeck, Peter S. Lübeck, Antoine Margeot, Benjamin Metz, Monica Misra, Helena Nevalainen, Markus Omann, Nicolle Packer, Giancarlo Perrone, Edith E. Uresti-Rivera, Asaf Salamov, Monika Schmoll, Bernhard Seiboth, Harris Shapiro, Serenella Sukno, Juan Antonio Tamayo-Ramos, Doris Tisch, Aric Wiest, Heather H. Wilkinson, Michael Zhang, Pedro M. Coutinho, Charles M. Kenerley, Enrique Monte, Scott E. Baker, Igor V. Grigoriev

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

346 Citations (Scopus)
35 Downloads (Pure)


Background: Mycoparasitism, a lifestyle where one fungus is parasitic on another fungus, has special relevance when the prey is a plant pathogen, providing a strategy for biological control of pests for plant protection. Probably, the most studied biocontrol agents are species of the genus Hypocrea/Trichoderma.Results: Here we report an analysis of the genome sequences of the two biocontrol species Trichoderma atroviride (teleomorph Hypocrea atroviridis) and Trichoderma virens (formerly Gliocladium virens, teleomorph Hypocrea virens), and a comparison with Trichoderma reesei (teleomorph Hypocrea jecorina). These three Trichoderma species display a remarkable conservation of gene order (78 to 96%), and a lack of active mobile elements probably due to repeat-induced point mutation. Several gene families are expanded in the two mycoparasitic species relative to T. reesei or other ascomycetes, and are overrepresented in non-syntenic genome regions. A phylogenetic analysis shows that T. reesei and T. virens are derived relative to T. atroviride. The mycoparasitism-specific genes thus arose in a common Trichoderma ancestor but were subsequently lost in T. reesei.Conclusions: The data offer a better understanding of mycoparasitism, and thus enforce the development of improved biocontrol strains for efficient and environmentally friendly protection of plants.

Original languageEnglish
Article numberR40
Pages (from-to)1-15
Number of pages15
JournalGenome Biology
Issue number4
Publication statusPublished - 18 Apr 2011

Bibliographical note

This version is archived for private and non-commercial use under the terms of this BioMed Central open access license ("license") (see The work is protected by copyright and/or other applicable law. Any use of the work other than as authorized under this license is prohibited. For further rights please check the terms of the license, or contact the publisher.


Dive into the research topics of 'Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma'. Together they form a unique fingerprint.

Cite this