Comparative transcriptome profiling in human bicuspid aortic valve disease using RNA sequencing

Ratnasari Padang, Richard D. Bagnall, Tatiana Tsoutsman, Paul G. Bannon, Christopher Semsarian*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

26 Citations (Scopus)


Intrinsic valvular degeneration and dysfunction is the most common complication of bicuspid aortic valve (BAV) disease. Phenotypically, it ranges from calcific aortic stenosis to redundant or prolapsing regurgitant leaflets. The underlying molecular mechanism underpinning phenotype heterogeneity of valvular degeneration in BAV is poorly understood. We used RNA sequencing (RNA-seq) to identify genes and pathways responsible for the development of valvular degeneration in BAV, compared with tricuspid aortic valve (TAV). Comparative transcriptome analysis was performed on total RNA of aortic valve tissues of patients with diseased BAV (n = 5) and calcified TAV (n = 3). RNA-seq findings were validated by RT-qPCR. A total of 59 and 177 genes were significantly up- and downregulated, respectively, in BAV compared with TAV. Hierarchical clustering indicated heterogeneity within the BAV group, separating those with heavy calcification (BAVc) from those with redundant leaflets and/or minimal calcification (BAVr). Interestingly, the gene expression profile of the BAVc group closely resembled the TAV, with shared up- and downregulation of inflammatory andNOTCH1signaling pathways, respectively. Downregulation of matrix protease ADAMTS9 and protein aggrecan were observed in BAVr compared with TAV. Dysregulation of fetal gene programs were also present, with notable downregulation ofSEMA6BandSEMA3Fin BAVr and BAVc compared with TAV, respectively. Upregulation ofTBX20was observed exclusively in BAVr compared with BAVc. In conclusion, diverging molecular mechanisms underpin phenotype heterogeneity of valvular degeneration in BAV and data from the present study suggest that there may be shared mechanisms leading to calcification in BAV and TAV. Recognition of these pathways is fundamental to improve our understanding of the molecular basis of human BAV disease.

Original languageEnglish
Pages (from-to)75-87
Number of pages13
JournalPhysiological Genomics
Issue number3
Publication statusPublished - 1 Mar 2015
Externally publishedYes


  • Bicuspid aortic valve
  • Calcification
  • RNA sequencing
  • Transcriptome


Dive into the research topics of 'Comparative transcriptome profiling in human bicuspid aortic valve disease using RNA sequencing'. Together they form a unique fingerprint.

Cite this