TY - JOUR
T1 - Comparing direct image and wavelet transform-based approaches to analysing remote sensing imagery for predicting wildlife distribution
AU - Murwira, Amon
AU - Skidmore, Andrew K.
PY - 2010/7
Y1 - 2010/7
N2 - In this study we tested the ability to predict the probability of elephant (Loxodonta africana) presence in an agricultural landscape of Zimbabwe based on three methods of measuring the spatial heterogeneity in vegetation cover, where vegetation cover was measured using the Landsat Thematic Mapper (TM)-derived normalized difference vegetation index (NDVI). The three methods of measuring spatial heterogeneity were: one wavelet-derived spatial heterogeneity measure; and two direct image measures. The wavelet-derived spatial heterogeneity measure consists of the intensity, which measures the maximum contrast in the vegetation cover, and the dominant scale, which determines the scale at which this intensity occurs. The two direct image measures use the NDVI average and the NDVI coefficient of variation (NDVIcv). The results show that the wavelet-derived spatial heterogeneity significantly explains 80% of the variance in elephant presence compared with 60% and 48% variance explained by the NDVI average and NDVIcv, respectively. We conclude that the wavelet transform-based approach predicts elephant distribution better than the direct image measures of spatial heterogeneity.
AB - In this study we tested the ability to predict the probability of elephant (Loxodonta africana) presence in an agricultural landscape of Zimbabwe based on three methods of measuring the spatial heterogeneity in vegetation cover, where vegetation cover was measured using the Landsat Thematic Mapper (TM)-derived normalized difference vegetation index (NDVI). The three methods of measuring spatial heterogeneity were: one wavelet-derived spatial heterogeneity measure; and two direct image measures. The wavelet-derived spatial heterogeneity measure consists of the intensity, which measures the maximum contrast in the vegetation cover, and the dominant scale, which determines the scale at which this intensity occurs. The two direct image measures use the NDVI average and the NDVI coefficient of variation (NDVIcv). The results show that the wavelet-derived spatial heterogeneity significantly explains 80% of the variance in elephant presence compared with 60% and 48% variance explained by the NDVI average and NDVIcv, respectively. We conclude that the wavelet transform-based approach predicts elephant distribution better than the direct image measures of spatial heterogeneity.
UR - http://www.scopus.com/inward/record.url?scp=78650188820&partnerID=8YFLogxK
U2 - 10.1080/01431160903418241
DO - 10.1080/01431160903418241
M3 - Article
AN - SCOPUS:78650188820
SN - 0143-1161
VL - 31
SP - 6425
EP - 6440
JO - International Journal of Remote Sensing
JF - International Journal of Remote Sensing
IS - 24
ER -