Comparison of effects of peripheral vasculature on tonometric radial pulse and cuff-based brachial pulse waveform as used in estimation of central aortic pressures

Research output: Chapter in Book/Report/Conference proceedingConference proceeding contributionpeer-review

Abstract

Objective: Aortic pressure estimation requires reliable peripheral pulse waveform acquisition. The peripheral waveform can change with local vascular effects that can be independent of aortic pressure. This study quantifies the effects of peripheral vasculature changes on radial and brachial waveforms.

Design and Method: In 20 subjects (37± 15 years, 7 female), brachial volumetric displacement (cuff-based) and radial tonometry waveforms were simultaneously measured whilst a cuff around the hand on the same arm was inflated to induce transmural pressures of -60, -30, -15, 0, 15 and 30 mmHg, altering local peripheral resistance and compliance by graded arterial wall unloading. Aortic blood pressure (BP), augmentation index (AIx) and ejection duration were calculated from the measurements using a generalized transfer function. The parameters under unloaded conditions were compared to baseline measurements.

Results: Brachial systolic and diastolic BP did not change throughout the experiment. Altering peripheral resistance and compliance did not significantly change calculated aortic BP values, although changes were nominally greater for radial (maximum +8±1 mmHg) compared to brachial (maximum +2±1 mmHg) waveforms. AIx at 0 mmHg transmural pressure (maximum arterial wall unloading) was higher when derived from radial waveforms (+24±3%, p<0.001) but not when derived from brachial waveforms.

Conclusions: Localized changes in peripheral resistance and compliance affect tonometer acquired radial waveforms but not volumetric displacement acquired brachial pressure waveforms, as judged by computed central aortic augmentation pressure parameters. This suggests aortic pressure estimation from the brachial cuff waveform is less sensitive to peripheral vasculature disturbances that alter the peripheral arterial pulse morphology.

Original languageEnglish
Title of host publication2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Conference (EMBC)
Place of PublicationUSA
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
Number of pages4
ISBN (Electronic)9798350324471
ISBN (Print)9798350324488
DOIs
Publication statusPublished - 1 Jul 2023
EventAnnual International Conference of the IEEE Engineering in Medicine and Biology Conference (45th : 2023) - Sydney, Australia
Duration: 24 Jul 202327 Jul 2023

Publication series

NameAnnual International Conference of the IEEE Engineering in Medicine and Biology Society
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
Volume2023
ISSN (Electronic)2694-0604

Conference

ConferenceAnnual International Conference of the IEEE Engineering in Medicine and Biology Conference (45th : 2023)
Abbreviated titleEMBC 2023
Country/TerritoryAustralia
CitySydney
Period24/07/2327/07/23

Keywords

  • Humans
  • Female
  • Arterial Pressure
  • Blood Pressure Determination
  • Brachial Artery/physiology
  • Blood Pressure/physiology
  • Manometry
  • blood pressure
  • blood pressure waveform
  • radial
  • peripheral resistance
  • aortic
  • brachial

Fingerprint

Dive into the research topics of 'Comparison of effects of peripheral vasculature on tonometric radial pulse and cuff-based brachial pulse waveform as used in estimation of central aortic pressures'. Together they form a unique fingerprint.

Cite this