Complementary bulk and surface passivations for highly efficient perovskite solar cells by gas quenching

Shi Tang, Jueming Bing, Jianghui Zheng, Jianbo Tang, Yong Li, Mohannad Mayyas, Yongyoon Cho, Timothy W. Jones, Terry Chien-Jen Yang, Lin Yuan, Mike Tebyetekerwa, Hieu T. Nguyen, Michael P. Nielsen, N. J. Ekins-Daukes, Kourosh Kalantar-Zadeh, Gregory J. Wilson, David R. McKenzie, Shujuan Huang, Anita W. Y. Ho-Baillie*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

16 Citations (Scopus)
5 Downloads (Pure)


The power conversion efficiency (PCE) of metal halide perovskite solar cells (PSCs) has improved dramatically from 3.8% to 25.5% in only a decade. Gas quenching is a desirable method for fabricating high-efficiency cells as it does not consume antisolvents and is compatible with large-area deposition methods such as doctor blading and slot-die coating. To further improve PCEs for gas-quenched PSCs, here, we develop complementary bulk and surface passivation strategies by incorporating potassium iodide (KI) in the perovskite precursor and applying n-hexylammonium bromide (HABr) to the perovskite surface. We show that (1) KI induces a spatial-compositional change, improving grain boundary properties; (2) KI and HABr reduce traps, especially at levels close to the mid-gap; and (3) HABr greatly improves the built-in potential of the device, thereby improving voltage output. The champion device achieves a steady-state PCE of 23.6% with a VOC of 1.23V, which is, to the best of our knowledge, the highest for PSC by gas quenching to date.

Original languageEnglish
Article number100511
Pages (from-to)1-10
Number of pages11
JournalCell Reports Physical Science
Issue number8
Publication statusPublished - 18 Aug 2021

Bibliographical note

Copyright the Author(s) 2021. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.


  • compositional change
  • defect passivation
  • gas quenching
  • perovskite solar cell


Dive into the research topics of 'Complementary bulk and surface passivations for highly efficient perovskite solar cells by gas quenching'. Together they form a unique fingerprint.

Cite this