Complex acoustic environments: review, framework, and subjective model

Adam Weisser*, Jörg M. Buchholz, Gitte Keidser

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

14 Citations (Scopus)
59 Downloads (Pure)

Abstract

The concept of complex acoustic environments has appeared in several unrelated research areas within acoustics in different variations. Based on a review of the usage and evolution of this concept in the literature, a relevant framework was developed, which includes nine broad characteristics that are thought to drive the complexity of acoustic scenes. The framework was then used to study the most relevant characteristics for stimuli of realistic, everyday, acoustic scenes: multiple sources, source diversity, reverberation, and the listener’s task. The effect of these characteristics on perceived scene complexity was then evaluated in an exploratory study that reproduced the same stimuli with a three-dimensional loudspeaker array inside an anechoic chamber. Sixty-five subjects listened to the scenes and for each one had to rate 29 attributes, including complexity, both with and without target speech in the scenes. The data were analyzed using three-way principal component analysis with a (2 3 2) Tucker3 model in the dimensions of scales (or ratings), scenes, and subjects, explaining 42% of variation in the data. “Comfort” and “variability” were the dominant scale components, which span the perceived complexity. Interaction effects were observed, including the additional task of attending to target speech that shifted the complexity rating closer to the comfort scale. Also, speech contained in the background scenes introduced a second subject component, which suggests that some subjects are more distracted than others by background speech when listening to target speech. The results are interpreted in light of the proposed framework.

Original languageEnglish
Pages (from-to)1-20
Number of pages20
JournalTrends in Hearing
Volume23
DOIs
Publication statusPublished - 2019

Bibliographical note

Copyright the Author(s) 2019. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.

Keywords

  • hearing
  • complex acoustic environments
  • perception
  • complexity
  • three-way principal component analysis

Fingerprint

Dive into the research topics of 'Complex acoustic environments: review, framework, and subjective model'. Together they form a unique fingerprint.

Cite this