Component greenhouse gas fluxes and radiative balance from two deltaic marshes in Louisiana

pairing chamber techniques and eddy covariance

Ken W. Krauss*, Guerry O. Holm Jr., Brian C. Perez, David E. McWhorter, Nicole Cormier, Rebecca F. Moss, Darren J. Johnson, Scott C. Neubauer, Richard C. Raynie

*Corresponding author for this work

Research output: Contribution to journalArticle

32 Citations (Scopus)
10 Downloads (Pure)


Coastal marshes take up atmospheric CO2 while emitting CO2, CH4, and N2O. This ability to sequester carbon (C) is much greater for wetlands on a per area basis than from most ecosystems, facilitating scientific, political, and economic interest in their value as greenhouse gas sinks. However, the greenhouse gas balance of Gulf of Mexico wetlands is particularly understudied. We describe the net ecosystem exchange (NEEc) of CO2 and CH4 using eddy covariance (EC) in comparison with fluxes of CO2, CH4, and N2O using chambers from brackish and freshwater marshes in Louisiana, USA. From EC, we found that 182 g C m−2 yr−1 was lost through NEEc from the brackish marsh. Of this, 11 g C m−2 yr−1 resulted from net CH4 emissions and the remaining 171 g C m−2 yr−1 resulted from net CO2 emissions. In contrast, −290 g C m2 yr−1 was taken up through NEEc by the freshwater marsh, with 47 g C m−2 yr−1 emitted as CH4 and −337 g C m−2 yr−1 taken up as CO2. From chambers, we discovered that neither site had large fluxes of N2O. Sustained-flux greenhouse gas accounting metrics indicated that both marshes had a positive (warming) radiative balance, with the brackish marsh having a substantially greater warming effect than the freshwater marsh. That net respiratory emissions of CO2 and CH4 as estimated through chamber techniques were 2–4 times different from emissions estimated through EC requires additional understanding of the artifacts created by different spatial and temporal sampling footprints between techniques.

Original languageEnglish
Pages (from-to)1503-1521
Number of pages19
JournalJournal of geophysical research: Biogeosciences
Issue number6
Publication statusPublished - Jun 2016
Externally publishedYes

Bibliographical note

Copyright AGU 2016. Originally published as: Krauss, K., Holm, G., Perez, B., et al. (2016). Component greenhouse gas fluxes and radiative balance from two deltaic marshes in Louisiana: Pairing chamber techniques and eddy covariance. Journal of Geophysical Research: Biogeosciences, 121(6), 1503-1521. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.


  • carbon fluxes
  • net ecosystem exchange
  • soil fluxes
  • wetlands

Fingerprint Dive into the research topics of 'Component greenhouse gas fluxes and radiative balance from two deltaic marshes in Louisiana: pairing chamber techniques and eddy covariance'. Together they form a unique fingerprint.

Cite this