Comprehensive evaluation of molecular enhancers of the isothermal exponential amplification reaction

Ellie Mok, Eugene Wee, Yuling Wang, Matt Trau*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

36 Citations (Scopus)
62 Downloads (Pure)

Abstract

The exponential amplification reaction (EXPAR) is an emerging isothermal nucleic acid amplification method with high potential for molecular diagnostics due to its isothermal nature and high amplification efficiency. However, the use of EXPAR is limited by the high levels of non-specific amplification. Hence, methods that can improve the specificity of EXPAR are desired to facilitate its widespread adoption in practice. Herein, we proposed a strategy to improve EXPAR performance by using molecular enhancers. Eight small molecules were investigated, including ethylene glycol, propylene glycol, betaine, dimethyl sulfoxide (DMSO), trehalose, tetramethylammonium chloride (TMAC), bovine serum albumin (BSA) and single-stranded binding (SSB) proteins. A combination of kinetic and end-point analysis was adopted to investigate how these molecules affected EXPAR performance. Trehalose, TMAC, BSA and SSB proteins were found to have positive effects on EXPAR with trehalose being able to increase the efficiency of EXPAR. In contrast, TMAC, BSA and SSB proteins were shown to increase the specificity of EXPAR. We applied our findings to demonstrate the combination of trehalose and TMAC could simultaneously improve both the efficiency and specificity of an EXPAR-based miRNA detection method. The information provided in this study may serve as a reference to benefit the wider isothermal amplification community.

Original languageEnglish
Article number37837
Number of pages10
JournalScientific Reports
Volume6
DOIs
Publication statusPublished - 2 Dec 2016
Externally publishedYes

Bibliographical note

Copyright the Author(s) 2016. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.

Fingerprint

Dive into the research topics of 'Comprehensive evaluation of molecular enhancers of the isothermal exponential amplification reaction'. Together they form a unique fingerprint.

Cite this