Conjugated effect of Joule heating and magnetohydrodynamic on laminar convective heat transfer of nanofluids inside a concentric annulus in the presence of slip condition

S. A. Moshizi*, I. Pop

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

15 Citations (Scopus)

Abstract

In the current study, the conjugated effect of Joule heating and magnetohydrodynamics (MHD) on the forced convective heat transfer of fully developed laminar nanofluid flows inside annular pipes, under the influence of MHD field, has been investigated. The temperature and nanoparticle distributions at both the inner and outer walls are assumed to vary in the direction of the fluid. Furthermore, owing to the nanoparticle migrations in the fluid, a slip condition becomes far more important than the no-slip condition of the fluid–solid interface, which appropriately represents the non-equilibrium region near the interface. The governing equations—obtained by employing the Buongiorno’s model for nanofluid in cylindrical coordinates—are converted into two-point ordinary boundary value differential equations and solved numerically. The effects of various controlling parameters on the flow characteristics, the average Nusselt number and the average Sherwood number have been assessed in detail. Additionally, the effect of the inner to outer diameter ratio on the heat and mass transfer rate has been studied. The results obtained indicate that, in the presence of a magnetic field when the fluid is electrically conductive, heat transfer will be reduced significantly due to the influences of Joule heating, while the average mass transfer rate experiences an opposite trend. Moreover, the increase in the slip velocity on both the walls causes the average heat transfer to rise and the average mass transfer to decrease.

Original languageEnglish
Article number72
Pages (from-to)1-22
Number of pages22
JournalInternational Journal of Thermophysics
Volume37
Issue number7
DOIs
Publication statusPublished - Jul 2016
Externally publishedYes

Keywords

  • Annular pipes
  • Joule heating
  • MHD flow
  • Nanofluid
  • Slip condition

Fingerprint

Dive into the research topics of 'Conjugated effect of Joule heating and magnetohydrodynamic on laminar convective heat transfer of nanofluids inside a concentric annulus in the presence of slip condition'. Together they form a unique fingerprint.

Cite this