Constraints on ocean circulation at the Paleocene–Eocene Thermal Maximum from neodymium isotopes

April N. Abbott, Brian A. Haley*, Aradhna K. Tripati, Martin Frank

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    8 Citations (Scopus)
    96 Downloads (Pure)


    Global warming during the Paleocene-Eocene Thermal Maximum (PETM) ∼55 million years ago (Ma) coincided with a massive release of carbon to the ocean-atmosphere system, as indicated by carbon isotopic data. Previous studies have argued for a role of changing ocean circulation, possibly as a trigger or response to climatic changes. We use neodymium (Nd) isotopic data to reconstruct short high-resolution records of deep-water circulation across the PETM. These records are derived by reductively leaching sediments from seven globally distributed sites to reconstruct past deep-ocean circulation across the PETM. The Nd data for the leachates are interpreted to be consistent with previous studies that have used fish teeth Nd isotopes and benthic foraminiferal δ13C to constrain regions of convection. There is some evidence from combining Nd isotope and δ13C records that the three major ocean basins may not have had substantial exchanges of deep waters. If the isotopic data are interpreted within this framework, then the observed pattern may be explained if the strength of overturning in each basin varied distinctly over the PETM, resulting in differences in deep-water aging gradients between basins. Results are consistent with published interpretations from proxy data and model simulations that suggest modulation of overturning circulation had an important role for initiation and recovery of the ocean-atmosphere system associated with the PETM.

    Original languageEnglish
    Pages (from-to)837-847
    Number of pages11
    JournalClimate of the Past
    Issue number4
    Publication statusPublished - 7 Apr 2016

    Bibliographical note

    Copyright the Author(s) 2016. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.


    Dive into the research topics of 'Constraints on ocean circulation at the Paleocene–Eocene Thermal Maximum from neodymium isotopes'. Together they form a unique fingerprint.

    Cite this