Contribution of various carbon sources toward isoprene biosynthesis in poplar leaves mediated by altered atmospheric co 2 concentrations

Amy M. Trowbridge, Dolores Asensio, Allyson S D Eller, Danielle A. Way, Michael J. Wilkinson, Jörg Peter Schnitzler, Robert B. Jackson, Russell K. Monson

Research output: Contribution to journalArticle

32 Citations (Scopus)


Biogenically released isoprene plays important roles in both tropospheric photochemistry and plant metabolism. We performed a 13CO 2-labeling study using proton-transfer-reaction mass spectrometry (PTR-MS) to examine the kinetics of recently assimilated photosynthate into isoprene emitted from poplar (Populus × canescens) trees grown and measured at different atmospheric CO 2 concentrations. This is the first study to explicitly consider the effects of altered atmospheric CO 2 concentration on carbon partitioning to isoprene biosynthesis. We studied changes in the proportion of labeled carbon as a function of time in two mass fragments, M41 +, which represents, in part, substrate derived from pyruvate, and M69 +, which represents the whole unlabeled isoprene molecule. We observed a trend of slower 13C incorporation into isoprene carbon derived from pyruvate, consistent with the previously hypothesized origin of chloroplastic pyruvate from cytosolic phosphenolpyruvate (PEP). Trees grown under sub-ambient CO 2 (190 ppmv) had rates of isoprene emission and rates of labeling of M41 + and M69 + that were nearly twice those observed in trees grown under elevated CO 2 (590 ppmv). However, they also demonstrated the lowest proportion of completely labeled isoprene molecules. These results suggest that under reduced atmospheric CO 2 availability, more carbon from stored/older carbon sources is involved in isoprene biosynthesis, and this carbon most likely enters the isoprene biosynthesis pathway through the pyruvate substrate. We offer direct evidence that extra-chloroplastic rather than chloroplastic carbon sources are mobilized to increase the availability of pyruvate required to up-regulate the isoprene biosynthesis pathway when trees are grown under sub-ambient CO 2.

Original languageEnglish
Article numbere32387
Pages (from-to)1-11
Number of pages11
JournalPLoS ONE
Issue number2
Publication statusPublished - 23 Feb 2012


Cite this

Trowbridge, A. M., Asensio, D., Eller, A. S. D., Way, D. A., Wilkinson, M. J., Schnitzler, J. P., ... Monson, R. K. (2012). Contribution of various carbon sources toward isoprene biosynthesis in poplar leaves mediated by altered atmospheric co 2 concentrations. PLoS ONE, 7(2), 1-11. [e32387].