Abstract
Canonical forms are developed for a class of linear hyperbolic systems. They are then applied to solve the problem of eigenvalue assignemt by distributed feedback and boundary control. The duality of this problem is demonstrated to one of eigenvalue assignment by boundary feedback of an adjoint system subject to distributed control. For both systems it is shown that by feedback, the set right brace rho //i left brace can be assigned as eigenvalues of the closed loop system, subject to an asymptotic condition on the set right brace rho //i left brace . The feedback control is explicitly characterized. Analogous results are obtained for the problem of eigenvalue assignment by distributed feedback and distributed control.
Original language | English |
---|---|
Pages (from-to) | 711-729 |
Number of pages | 19 |
Journal | SIAM Journal on Control and Optimization |
Volume | 19 |
Issue number | 6 |
DOIs | |
Publication status | Published - Nov 1981 |