Control canonical forms and eigenvalue assignment by feedback for a class of linear hyperbolic systems

B. M N Clarke*, D. Williamson

*Corresponding author for this work

    Research output: Contribution to journalArticle

    9 Citations (Scopus)

    Abstract

    Canonical forms are developed for a class of linear hyperbolic systems. They are then applied to solve the problem of eigenvalue assignemt by distributed feedback and boundary control. The duality of this problem is demonstrated to one of eigenvalue assignment by boundary feedback of an adjoint system subject to distributed control. For both systems it is shown that by feedback, the set right brace rho //i left brace can be assigned as eigenvalues of the closed loop system, subject to an asymptotic condition on the set right brace rho //i left brace . The feedback control is explicitly characterized. Analogous results are obtained for the problem of eigenvalue assignment by distributed feedback and distributed control.

    Original languageEnglish
    Pages (from-to)711-729
    Number of pages19
    JournalSIAM Journal on Control and Optimization
    Volume19
    Issue number6
    DOIs
    Publication statusPublished - Nov 1981

    Fingerprint Dive into the research topics of 'Control canonical forms and eigenvalue assignment by feedback for a class of linear hyperbolic systems'. Together they form a unique fingerprint.

    Cite this