Correction of the significance level when attempting multiple transformations of an explanatory variable in generalized linear models

Benoit Liquet, Jérémie Riou*

*Corresponding author for this work

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

Background: In statistical modeling, finding the most favorable coding for an exploratory quantitative variable involves many tests. This process involves multiple testing problems and requires the correction of the significance level.

Methods: For each coding, a test on the nullity of the coefficient associated with the new coded variable is computed. The selected coding corresponds to that associated with the largest statistical test (or equivalently the smallest pvalue). In the context of the Generalized Linear Model, Liquet and Commenges (Stat Probability Lett,71:33-38,2005) proposed an asymptotic correction of the significance level. This procedure, based on the score test, has been developed for dichotomous and Box-Cox transformations. In this paper, we suggest the use of resampling methods to estimate the significance level for categorical transformations with more than two levels and, by definition those that involve more than one parameter in the model. The categorical transformation is a more flexible way to explore the unknown shape of the effect between an explanatory and a dependent variable.

Results: The simulations we ran in this study showed good performances of the proposed methods. These methods were illustrated using the data from a study of the relationship between cholesterol and dementia.

Conclusion: The algorithms were implemented using R, and the associated CPMCGLM R package is available on the CRAN.

Original languageEnglish
Article number75
Pages (from-to)1-10
Number of pages10
JournalBMC Medical Research Methodology
Volume13
DOIs
Publication statusPublished - 2013
Externally publishedYes

Bibliographical note

Copyright the Author(s) 2013. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.

Keywords

  • Bonferroni procedure
  • Generalized linear model
  • Multiple coding
  • Parametric bootstrap
  • Permutation
  • pvalue
  • Resampling procedure

Fingerprint Dive into the research topics of 'Correction of the significance level when attempting multiple transformations of an explanatory variable in generalized linear models'. Together they form a unique fingerprint.

Cite this