Coupled silicon-oxygen isotope fractionation traces Archaean silicification

K. Abraham*, A. Hofmann, S. F. Foley, D. Cardinal, C. Harris, M. G. Barth, L. Andre

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

72 Citations (Scopus)

Abstract

Silica alteration zones and cherts are a conspicuous feature of Archaean greenstone belts worldwide and provide evidence of extensive mobilisation of silica in the marine environment of the early Earth. In order to understand the process(es) of silicification we measured the silicon and oxygen isotope composition of sections of variably silicified basalts and overlying bedded cherts from the Theespruit, Hooggenoeg and Kromberg Formations of the Barberton Greenstone Belt, South Africa.The δ 30Si and δ 18O values of bulk rock increase with increasing amount of silicification from unsilicified basalts (-0.64%<δ 30Si<-0.01% and +8.6%<δ 18O<+11.9%) to silicified basalts (δ 30Si and δ 18O values as high as +0.81% and +15.6%, respectively). Cherts generally have positive isotope ratios (+0.215<δ 30Si<+1.05% and +10.9<δ 18O<+17.1), except two cherts, which have negative δ 30Si values, but high δ 18O (up to +19.5%).The pronounced positive correlations between δ 30Si, δ 18O and SiO 2 imply that the isotope variation is driven by the silicification process which coevally introduced both 18O and 30Si into the basalts. The oxygen isotope variation in the basalts from about 8.6% to 15.6% is likely to represent temperature-dependent isotope fractionation during alteration. Our proposed model for the observed silicon isotope variation relies on a temperature-controlled basalt dissolution vs. silica deposition process.

Original languageEnglish
Pages (from-to)222-230
Number of pages9
JournalEarth and Planetary Science Letters
Volume301
Issue number1-2
DOIs
Publication statusPublished - 3 Jan 2011
Externally publishedYes

Fingerprint

Dive into the research topics of 'Coupled silicon-oxygen isotope fractionation traces Archaean silicification'. Together they form a unique fingerprint.

Cite this