Projects per year
Abstract
We build a new radially anisotropic shear wave velocity model of Southern California based on ambient noise adjoint tomography to investigate crustal deformation associated with Cenozoic evolution of the Pacific-North American plate boundary. Pervasive positive radial anisotropy (4%) is observed in the crust east of the San Andreas Fault (SAF), attributed to subhorizontal alignment of mica/amphibole foliation planes resulting from significant crustal extension. Substantial negative anisotropy (6%) is revealed in the middle/lower crust west of the SAF, where high shear wave speeds are also observed. The negative anisotropy could result from steeply dipping amphibole schists in a shear zone developed during Laramide flat slab subduction. Alternatively, it could be caused by the crystal preferred orientation (CPO) of plagioclase, whose fast axis aligns orthogonally to a presumed subhorizontal foliation. The latter new mechanism highlights potentially complex CPO patterns resulting from different lithospheric mineralogy, as suggested by laboratory experiments on xenoliths from the region.
Original language | English |
---|---|
Article number | e2020GL088580 |
Pages (from-to) | 1-12 |
Number of pages | 12 |
Journal | Geophysical Research Letters |
Volume | 47 |
Issue number | 12 |
DOIs | |
Publication status | Published - 28 Jun 2020 |
Fingerprint
Dive into the research topics of 'Crustal deformation in Southern California constrained by radial anisotropy from ambient noise adjoint tomography'. Together they form a unique fingerprint.-
How the Earth moves: Developing a novel seismological approach to map the small-scale dynamics of the upper mantle
Yang, Y., MQRES, M. & MQRES (International), M.
20/01/14 → …
Project: Research
-
Unveiling the fine structure of the Australian continent using ocean waves
Yang, Y., Afonso, J. C., Rawlinson, N. & Niu, F.
27/05/19 → 26/05/22
Project: Research