Cyanopolyynes in hot cores: Modelling G305.2+0.2

J. F. Chapman, T. J. Millar, M. Wardle, M. G. Burton, A. J. Walsh

Research output: Contribution to journalArticlepeer-review

31 Citations (Scopus)


We present results from a time-dependent gas-phase chemical model of a hot core based on the physical conditions of G305.2+0.2. While the cyanopolyyne HC 3N has been observed in hot cores, the longer chained species, HC 5N, HC 7N and HC 9N, have not been considered as the typical hot-core species. We present results which show that these species can be formed under hot core conditions. We discuss the important chemical reactions in this process and, in particular, show that their abundances are linked to the parent species acetylene which is evaporated from icy grain mantles. The cyanopolyynes show promise as 'chemical clocks' which may aid future observations in determining the age of hot core sources. The abundance of the larger cyanopolyynes increases and decreases over relatively short time-scales, ∼10 2.5 yr. We present results from a non-local thermodynamic equilibrium statistical equilibrium excitation model as a series of density, temperature and column density dependent contour plots which show both the line intensities and several line ratios. These aid in the interpretation of spectral-line data, even when there is limited line information available. In particular, non-detections of HC 5N and HC 7N in Walsh et al. are analysed and discussed.

Original languageEnglish
Pages (from-to)221-230
Number of pages10
JournalMonthly Notices of the Royal Astronomical Society
Issue number1
Publication statusPublished - Mar 2009

Fingerprint Dive into the research topics of 'Cyanopolyynes in hot cores: Modelling G305.2+0.2'. Together they form a unique fingerprint.

Cite this