Dark Energy Survey year 3 results: covariance modelling and its impact on parameter estimation and quality of fit

DES Collaboration, O. Friedrich*, F. Andrade-Oliveira, H. Camacho, O. Alves, R. Rosenfeld, J. Sanchez, X. Fang, T. F. Eifler, E. Krause, C. Chang, Y. Omori, A. Amon, E. Baxter, J. Elvin-Poole, D. Huterer, A. Porredon, J. Prat, V. Terra, A. TrojaA. Alarcon, K. Bechtol, G. M. Bernstein, R. Buchs, A. Campos, A. Carnero Rosell, M. Carrasco Kind, R. Cawthon, A. Choi, J. Cordero, M. Crocce, C. Davis, J. DeRose, H. T. Diehl, S. Dodelson, C. Doux, A. Drlica-Wagner, F. Elsner, S. Everett, P. Fosalba, M. Gatti, G. Giannini, D. Gruen, R. A. Gruendl, I. Harrison, W. G. Hartley, B. Jain, M. Jarvis, N. MacCrann, J. McCullough, J. Muir, J. Myles, S. Pandey, M. Raveri, A. Roodman, M. Rodriguez-Monroy, E. S. Rykoff, S. Samuroff, C. Sánchez, L. F. Secco, I. Sevilla-Noarbe, E. Sheldon, M. A. Troxel, N. Weaverdyck, B. Yanny, M. Aguena, S. Avila, D. Bacon, E. Bertin, S. Bhargava, D. Brooks, D. L. Burke, J. Carretero, M. Costanzi, L. N. da Costa, M. E. S. Pereira, J. De Vicente, S. Desai, A. E. Evrard, Bruno Ferrero, J. Frieman, J. García-Bellido, E. Gaztanaga, D. W. Gerdes, T. Giannantonio, J. Gschwend, G. Gutierrez, S. R. Hinton, D. L. Hollowood, K. Honscheid, D. J. James, K. Kuehn, O. Lahav, M. Lima, M. A. G. Maia, F. Menanteau, R. Miquel, R. Morgan, A. Palmese, F. Paz-Chinchón, A. A. Plazas, E. Sanchez, V. Scarpine, S. Serrano, M. Soares-Santos, M. Smith, E. Suchyta, G. Tarle, D. Thomas, C. To, T. N. Varga, J. Weller, R. D. Wilkinson

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

59 Citations (Scopus)
11 Downloads (Pure)

Abstract

We describe and test the fiducial covariance matrix model for the combined two-point function analysis of the Dark Energy Survey Year 3 (DES-Y3) data set. Using a variety of new ansatzes for covariance modelling and testing, we validate the assumptions and approximations of this model. These include the assumption of Gaussian likelihood, the trispectrum contribution to the covariance, the impact of evaluating the model at a wrong set of parameters, the impact of masking and survey geometry, deviations from Poissonian shot noise, galaxy weighting schemes, and other sub-dominant effects. We find that our covariance model is robust and that its approximations have little impact on goodness of fit and parameter estimation. The largest impact on best-fitting figure-of-merit arises from the so-called fsky approximation for dealing with finite survey area, which on average increases the χ2 between maximum posterior model and measurement by 3.7 per cent (∆χ2 ≈ 18.9). Standard methods to go beyond this approximation fail for DES-Y3, but we derive an approximate scheme to deal with these features. For parameter estimation, our ignorance of the exact parameters at which to evaluate our covariance model causes the dominant effect. We find that it increases the scatter of maximum posterior values for Ωm and σ8 by about 3 per cent and for the dark energy equation-of-state parameter by about 5 per cent.

Original languageEnglish
Pages (from-to)3125-3165
Number of pages41
JournalMonthly Notices of the Royal Astronomical Society
Volume508
Issue number3
DOIs
Publication statusPublished - Dec 2021

Bibliographical note

Copyright The Author(s) 2021. Published by Oxford University Press on behalf of Royal Astronomical Society. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.

Keywords

  • large-scale structure of Universe
  • cosmology: observations

Fingerprint

Dive into the research topics of 'Dark Energy Survey year 3 results: covariance modelling and its impact on parameter estimation and quality of fit'. Together they form a unique fingerprint.

Cite this