Abstract
A novel experimental paradigm, “deconvolution of ears' activity” (DEA), is presented which allows to disentangle overlapping neural activity from both auditory cortices when two auditory stimuli are presented closely together in time in each ear. Pairs of multi-tone complexes were presented either binaurally, or sequentially by alternating presentation order in each ear (i.e., first tone complex of the pair presented to one ear and second tone complex to the other ear), using stimulus onset asynchronies (SOAs) shorter than the neural response length. This timing strategy creates overlapping responses, which can be mathematically separated using least-squares deconvolution. The DEA paradigm allowed the evaluation of the neural representation in the auditory cortex of responses to stimuli presented at syllabic rates (i.e., SOAs between 120 and 260 ms). Analysis of the neuromagnetic responses in each cortex offered a sensitive technique to study hemispheric lateralization, ear representation (right vs. left), pathway advantage (contra- vs. ipsi-lateral) and cortical binaural interaction. To provide a proof-of-concept of the DEA paradigm, data was recorded from three normal-hearing adults. Results showed good test-retest reliability, and indicated that the difference score between hemispheres can potentially be used to assess central auditory processing. This suggests that the method could be a potentially valuable tool for generating an objective “auditory profile” by assessing individual fine-grained auditory processing using a non-invasive recording method.
Original language | English |
---|---|
Article number | 892198 |
Pages (from-to) | 1-9 |
Number of pages | 9 |
Journal | Frontiers in Systems Neuroscience |
Volume | 16 |
DOIs | |
Publication status | Published - 14 Jul 2022 |
Bibliographical note
Copyright the Author(s) 2022. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.Keywords
- auditory cortical responses
- auditory stimulation
- least-squares deconvolution
- overlapping neural responses
- rapid acoustic stimulation