Deep learning in forestry using uav-acquired rgb data: a practical review

Yago Diez*, Sarah Kentsch, Motohisa Fukuda, Maximo Larry Lopez Caceres, Koma Moritake, Mariano Cabezas

*Corresponding author for this work

Research output: Contribution to journalReview articlepeer-review

86 Citations (Scopus)
23 Downloads (Pure)

Abstract

Forests are the planet’s main CO2 filtering agent as well as important economical, environmental and social assets. Climate change is exerting an increased stress, resulting in a need for improved research methodologies to study their health, composition or evolution. Traditionally, information about forests has been collected using expensive and work-intensive field inventories, but in recent years unoccupied autonomous vehicles (UAVs) have become very popular as they represent a simple and inexpensive way to gather high resolution data of large forested areas. In addition to this trend, deep learning (DL) has also been gaining much attention in the field of forestry as a way to include the knowledge of forestry experts into automatic software pipelines tackling problems such as tree detection or tree health/species classification. Among the many sensors that UAVs can carry, RGB cameras are fast, cost-effective and allow for straightforward data interpretation. This has resulted in a large increase in the amount of UAV-acquired RGB data available for forest studies. In this review, we focus on studies that use DL and RGB images gathered by UAVs to solve practical forestry research problems. We summarize the existing studies, provide a detailed analysis of their strengths paired with a critical assessment on common methodological problems and include other information, such as available public data and code resources that we believe can be useful for researchers that want to start working in this area. We structure our discussion using three main families of forestry problems: (1) individual Tree Detection, (2) tree Species Classification, and (3) forest Anomaly Detection (forest fires and insect Infestation).

Original languageEnglish
Article number2837
Pages (from-to)1-43
Number of pages43
JournalRemote Sensing
Volume13
Issue number14
DOIs
Publication statusPublished - Jul 2021
Externally publishedYes

Bibliographical note

Copyright the Author(s) 2021. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.

Keywords

  • deep learning
  • forestry
  • literature review
  • practical applications
  • RGB
  • UAV

Fingerprint

Dive into the research topics of 'Deep learning in forestry using uav-acquired rgb data: a practical review'. Together they form a unique fingerprint.

Cite this