Deep learning networks for human activity recognition with CSI correlation feature extraction

Zhenguo Shi, J. Andrew Zhang, Richard Xu, Qingqing Cheng

Research output: Chapter in Book/Report/Conference proceedingConference proceeding contributionpeer-review

13 Citations (Scopus)

Abstract

Device free WiFi Sensing using channel state information (CSI) has been shown great potentials for human activity recognition (HAR). However, extracting reliable and concise feature signals remains as a challenging problem, especially in a dynamic and complex environment. In this paper, we propose a novel scheme for CSI-based HAR using deep learning network (CH-DLN), with an innovative CSI correlation feature extraction (CCFE) method. The CCFE method pre-processes the signals input to the DLN in two steps. Firstly, it uses a recursive algorithm to reduce non-activity-related information from the signal and hence enhance the activity-dependent signals. Secondly, it computes the correlation over both the time and frequency domain to disclose better signal structure and compress the signal. From such enhanced and compressed signals, we utilize the recurrent neural networking (RNN) to automatically extract deeper features, and then apply the softmax regression algorithm for classifying activities. Through extensive experimental results, our proposed scheme is shown to outperform state-of-the-art methods in recognition accuracy, with much less training time.

Original languageEnglish
Title of host publication2019 IEEE International Conference on Communications (ICC)
Subtitle of host publicationproceedings
Place of PublicationPiscataway, NJ
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
Number of pages6
ISBN (Electronic)9781538680889
ISBN (Print)9781538680896
DOIs
Publication statusPublished - 2019
Externally publishedYes
Event2019 IEEE International Conference on Communications, ICC 2019 - Shanghai, China
Duration: 20 May 201924 May 2019

Publication series

Name
ISSN (Print)1550-3607
ISSN (Electronic)1938-1883

Conference

Conference2019 IEEE International Conference on Communications, ICC 2019
Country/TerritoryChina
CityShanghai
Period20/05/1924/05/19

Fingerprint

Dive into the research topics of 'Deep learning networks for human activity recognition with CSI correlation feature extraction'. Together they form a unique fingerprint.

Cite this