Abstract
Atom probe microscopy (APM) is a relatively new in situ tool for measuring isotope fractions from nanoscale volumes (< 0.01 μm3). We calculate the theoretical detectable difference of an isotope ratio measurement result from APM using counting statistics of a hypothetical data set to be ± 4δ or 0.4% (2s). However, challenges associated with APM measurements (e.g., peak ranging, hydride formation and isobaric interferences), result in larger uncertainties if not properly accounted for. We evaluate these factors for Re-Os isotope ratio measurements by comparing APM and negative thermal ionisation mass spectrometry (N-TIMS) measurement results of pure Os, pure Re, and two synthetic Re-Os-bearing alloys from Schwander et al. (2015, Meteoritics and Planetary Science, 50, 893) [the original metal alloy (HSE) and alloys produced by heating HSE within silicate liquid (SYN)]. From this, we propose a current best practice for APM Re-Os isotope ratio measurements. Using this refined approach, mean APM and N-TIMS 187Os/189Os measurement results agree within 0.05% and 2s (pure Os), 0.6–2% and 2s (SYN) and 5–10% (HSE). The good agreement of N-TIMS and APM 187Os/189Os measurements confirms that APM can extract robust isotope ratios. Therefore, this approach permits nanoscale isotope measurements of Os-bearing alloys using the Re-Os geochronometer that could not be measured by conventional measurement principles.
Original language | English |
---|---|
Pages (from-to) | 279-299 |
Number of pages | 21 |
Journal | Geostandards and Geoanalytical Research |
Volume | 42 |
Issue number | 3 |
DOIs | |
Publication status | Published - Sep 2018 |
Keywords
- atom probe microscopy
- N-TIMS
- Re-Os dating
- isotopes
- method developments
- geochronology
- in situ techniques