TY - JOUR
T1 - Design and analysis of GO coated high sensitive tunable SPR sensor for OATR spectroscopic biosensing applications
AU - Islam, Md. Arefin
AU - Paul, Alok Kumar
AU - Hossain, Belal
AU - Sarkar, Ajay Krishno
AU - Rahman, Md. Mahabubur
AU - Sayem, Abu Sadat Md
AU - Simorangkir, Roy B. V. B.
AU - Shobug, Md. Asaduzzaman
AU - Buckley, John L.
AU - Chakrabarti, Kisalaya
AU - Lalbakhsh, Ali
N1 - Copyright the Author(s). Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.
PY - 2022
Y1 - 2022
N2 - In this paper, we numerically debrief an ultra-high sensitive surface plasmon resonance (SPR) biosensor utilizing thin layers of graphene oxide (GO) that have not been addressed adequately till now. By the deposition of GO on top of the metal-dielectric heterostructure, our proposed sensor can achieve higher sensitivity and higher Quality Factor (QF) simultaneously which has not been possible by the existing models to our knowledge. Because of its large surface area and sp2 inside of an sp3 matrix which is capable of confining π electrons, GO can form strong covalent bonds with biomolecules and hence enhanced light-material interaction that made researchers contemplate to achieve increased sensitivity and figure of merit. Both the transfer matrix method and finite element method are exploited to perform extensive numerical analysis for optimizing the structure considering its sensitivity, full width half maximum (FWHM), and QF. This paper examines six different configurations of multilayer heterostructure containing prism-adhesive-metal-BaTiO3/BP-Gr/GO/MXene-sensing medium, and a noticeably enhanced performance is achieved using GO with a maximum sensitivity of 372 deg/RIU and QF of 88.11 RIU-1 in the range of refractive index (RI) 1.330 to 1.353. Moreover, the possibility of designing a tunable SPR sensor to operate at a broader range of analyte's RI is investigated, and 414 deg/RIU with 119.27 RIU-1 QF at 1.407 RI is achieved. The Electric field distribution, effects of different layers, and fabrication feasibility of the proposed sensor are explored, it is envisaged that this can be an appropriate apparatus for highly sensitive, rapid, and noninvasive label-free biosensing useful in experimental sensing protocols.
AB - In this paper, we numerically debrief an ultra-high sensitive surface plasmon resonance (SPR) biosensor utilizing thin layers of graphene oxide (GO) that have not been addressed adequately till now. By the deposition of GO on top of the metal-dielectric heterostructure, our proposed sensor can achieve higher sensitivity and higher Quality Factor (QF) simultaneously which has not been possible by the existing models to our knowledge. Because of its large surface area and sp2 inside of an sp3 matrix which is capable of confining π electrons, GO can form strong covalent bonds with biomolecules and hence enhanced light-material interaction that made researchers contemplate to achieve increased sensitivity and figure of merit. Both the transfer matrix method and finite element method are exploited to perform extensive numerical analysis for optimizing the structure considering its sensitivity, full width half maximum (FWHM), and QF. This paper examines six different configurations of multilayer heterostructure containing prism-adhesive-metal-BaTiO3/BP-Gr/GO/MXene-sensing medium, and a noticeably enhanced performance is achieved using GO with a maximum sensitivity of 372 deg/RIU and QF of 88.11 RIU-1 in the range of refractive index (RI) 1.330 to 1.353. Moreover, the possibility of designing a tunable SPR sensor to operate at a broader range of analyte's RI is investigated, and 414 deg/RIU with 119.27 RIU-1 QF at 1.407 RI is achieved. The Electric field distribution, effects of different layers, and fabrication feasibility of the proposed sensor are explored, it is envisaged that this can be an appropriate apparatus for highly sensitive, rapid, and noninvasive label-free biosensing useful in experimental sensing protocols.
U2 - 10.1109/ACCESS.2022.3211099
DO - 10.1109/ACCESS.2022.3211099
M3 - Article
AN - SCOPUS:85139430276
SN - 2169-3536
VL - 10
SP - 103496
EP - 103508
JO - IEEE Access
JF - IEEE Access
ER -