Design of robust integral terminal sliding mode controllers with exponential reaching laws for solar PV and BESS-based DC microgrids with uncertainties

Sabrina Yeasmin, Tushar Kanti Roy*, Subarto Kumar Ghosh

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)

Abstract

In this paper, an integral terminal sliding mode controller (ITSMC) based on a modified exponential reaching law (MERL) is developed for providing large-signal DC-bus voltage stability while smoothing power flow in DC microgrids (DCMGs). It is worth mentioning that this control approach is not employed in DCMG applications yet to adjust the DC-bus voltage while preserving power balance. The proposed DCMG is made up of a solar photovoltaic (PV) unit, a battery energy storage system (BESS), and DC loads. A DC-DC boost converter (DDBC) and a bidirectional DC-DC converter (BDDC) are employed to connect the solar PV and BESS, respectively, with the DC-bus, which not only controls the output power of these units but also regulates the DC-bus voltage. First, a detailed dynamical model including external disturbances is developed for each component, i.e., the solar PV and BESS. Then, the proposed control approach is employed on these units to get their corresponding control signals. Afterward, the overall stability of each unit is ensured using the Lyapunov stability theory. Moreover, to ensure the robustness of the proposed controller, external disturbances are also bounded based on the value of user-defined constants. Finally, simulation results are used to evaluate the effectiveness of the proposed control approach in a variety of operational scenarios. Additionally, simulation results of the proposed control strategy are compared to those of existing controllers to demonstrate its superiority.

Original languageEnglish
Article number7802
Pages (from-to)1-17
Number of pages17
JournalSustainability
Volume14
Issue number13
DOIs
Publication statusPublished - 1 Jul 2022
Externally publishedYes

Bibliographical note

Copyright the Author(s) 2022. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.

Keywords

  • DC microgrid
  • nonlinear dynamical systems
  • integral terminal sliding mode control
  • lyapunov function
  • renewable energy sources
  • uncertainties

Cite this