Detection of invasive species in Wetlands: practical dl with heavily imbalanced data

Mariano Cabezas, Sarah Kentsch, Luca Tomhave, Jens Gross, Maximo Larry Lopez Caceres, Yago Diez*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

20 Citations (Scopus)
31 Downloads (Pure)

Abstract

Deep Learning (DL) has become popular due to its ease of use and accuracy, with Transfer Learning (TL) effectively reducing the number of images needed to solve environmental problems. However, this approach has some limitations which we set out to explore: Our goal is to detect the presence of an invasive blueberry species in aerial images of wetlands. This is a key problem in ecosystem protection which is also challenging in terms of DL due to the severe imbalance present in the data. Results for the ResNet50 network show a high classification accuracy while largely ignoring the blueberry class, rendering these results of limited practical interest to detect that specific class. Moreover, by using loss function weighting and data augmentation results more akin to our practical application, our goals can be obtained. Our experiments regarding TL show that ImageNet weights do not produce satisfactory results when only the final layer of the network is trained. Furthermore, only minor gains are obtained compared with random weights when the whole network is retrained. Finally, in a study of state-of-the-art DL architectures best results were obtained by the ResNeXt architecture with 93.75 True Positive Rate and 98.11 accuracy for the Blueberry class with ResNet50, Densenet, and wideResNet obtaining close results.

Original languageEnglish
Article number3431
Pages (from-to)1-17
Number of pages17
JournalRemote Sensing
Volume12
Issue number20
DOIs
Publication statusPublished - 2 Oct 2020
Externally publishedYes

Bibliographical note

Copyright the Author(s) 2020. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.

Keywords

  • data analysis
  • deep learning
  • transfer learning
  • unbalanced data
  • unmanned aerial vehicles (UAV)-acquired images

Fingerprint

Dive into the research topics of 'Detection of invasive species in Wetlands: practical dl with heavily imbalanced data'. Together they form a unique fingerprint.

Cite this