Abstract
Deep learning algorithms have been increasingly used in ship image detection and classification. To improve the ship detection and classification in photoelectric images, an improved recurrent attention convolutional neural network is proposed. The proposed network has a multi-scale architecture and consists of three cascading sub-networks, each with a VGG19 network for image feature extraction and an attention proposal network for locating feature area. A scale-dependent pooling algorithm is designed to select an appropriate convolution in the VGG19 network for classification, and a multi-feature mechanism is introduced in attention proposal network to describe the feature regions. The VGG19 and attention proposal network are cross-trained to accelerate convergence and to improve detection accuracy. The proposed method is trained and validated on a self-built ship database and effectively improve the detection accuracy to 86.7% outperforming the baseline VGG19 and recurrent attention convolutional neural network methods.
Original language | English |
---|---|
Pages (from-to) | 1-11 |
Number of pages | 11 |
Journal | International Journal of Distributed Sensor Networks |
Volume | 16 |
Issue number | 3 |
DOIs | |
Publication status | Published - Mar 2020 |
Bibliographical note
Copyright the Author(s) 2020. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.Keywords
- Ship detection
- fine-grained image classification
- recurrent attention convolutional neural network
- scale-dependent pooling
- cross-training