Determination of aortic pulse wave velocity from waveform decomposition of the central aortic pressure pulse

Ahmed Qasem, Alberto Avolio*

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    116 Citations (Scopus)


    Aortic pulse wave velocity (PWV), calculated from pulse transit time (PTT) using 2 separate pulse recordings over a known distance, is a significant biomarker of cardiovascular risk. This study evaluates a novel method of determining PTT from waveform decomposition of central aortic pressure using a single pulse measurement. Aortic pressure was estimated from a transformed radial pulse and decomposed into forward and backward waves using a triangular flow wave. Pulse transit time was determined from cross-correlation of forward and backward waves. Pulse transit time, representing twice the PTT between 2 specific sites, was compared with independent measurements of carotid-femoral PTT in a cohort of 46 subjects (23 females; age 57±14 years). Linear regression between measured PTT (y; milliseconds) and calculated PTT (x; milliseconds) was y=1.05x-2.1 (r=0.67; P<0.001). This model was tested in a separate group of 44 subjects (21 females; age 55±14 years) by comparing measured carotid-femoral PWV (y; meters per second) and PWV calculated using the estimated value of PTT (eTR/2) and carotid femoral distance (x; meters per second; y=1.21x-2.5; r=0.82; P<0.001). Findings indicate that the time lag between the forward and backward waves obtained from the decomposition of aortic pressure wave can be used to determine PWV along the aortic trunk and shows good agreement with carotid-femoral PWV. This technique can be used as a noninvasive and nonintrusive method for measurement of aortic PWV using a single pressure recording.

    Original languageEnglish
    Pages (from-to)188-195
    Number of pages8
    Issue number2
    Publication statusPublished - Feb 2008


    Dive into the research topics of 'Determination of aortic pulse wave velocity from waveform decomposition of the central aortic pressure pulse'. Together they form a unique fingerprint.

    Cite this