Developing new adsorptive membrane by modification of support layer with iron oxide microspheres for arsenic removal

Xuan Zhang, Xiaofeng Fang, Jiansheng Li*, Shunlong Pan, Xiuyun Sun, Jinyou Shen, Weiqing Han, Lianjun Wang, Shuaifei Zhao

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    33 Citations (Scopus)


    Arsenic-contaminated water has significant adverse impacts on human health and ecosystems. We developed a new adsorptive membrane by modifying the porous support layer of a phase inversion formed membrane for arsenic removal. Iron oxide (Fe3O4) microspheres were immobilized in the support layer of the membrane by reverse filtration, followed by dopamine polymerization. The prepared adsorptive membrane was compared with a virgin membrane without Fe3O4 microspheres and a Fe3O4 blended membrane in terms of membrane structures and separation performance. The adsorptive membrane prepared by our new method had comparable water permeability and rejection performance with the virgin membrane without Fe3O4 microspheres, but higher rejection performance and dynamic adsorption capacity than the membrane prepared by the conventional blending method. Both static and dynamic adsorption modes were used to evaluate the adsorption performance of the membranes. Our new adsorptive membrane also had excellent regeneration performance. After three regeneration cycles, the membrane was still capable of treating more than 2 tons of As-contaminated water/m2. The adsorptive membrane of 1 m2 could treat over 7 tons of water to the drinking water standard in terms of arsenic concentration during three regeneration cycles. Therefore, our adsorptive membrane may pave a new way for arsenic removal from water and ensuring drinking water security.

    Original languageEnglish
    Pages (from-to)760-768
    Number of pages9
    JournalJournal of Colloid and Interface Science
    Early online dateJan 2018
    Publication statusPublished - 15 Mar 2018


    • Adsorption
    • Arsenic removal
    • FeO microspheres
    • Membrane separation
    • Water treatment


    Dive into the research topics of 'Developing new adsorptive membrane by modification of support layer with iron oxide microspheres for arsenic removal'. Together they form a unique fingerprint.

    Cite this