Development of novel drugs from marine surface associated microorganisms

Anahit Penesyan, Staffan Kjelleberg, Suhelen Egan*

*Corresponding author for this work

Research output: Contribution to journalReview articlepeer-review

180 Citations (Scopus)
2 Downloads (Pure)

Abstract

While the oceans cover more than 70% of the Earth's surface, marine derived microbial natural products have been largely unexplored. The marine environment is a habitat for many unique microorganisms, which produce biologically active compounds ("bioactives") to adapt to particular environmental conditions. For example, marine surface associated microorganisms have proven to be a rich source for novel bioactives because of the necessity to evolve allelochemicals capable of protecting the producer from the fierce competition that exists between microorganisms on the surfaces of marine eukaryotes. Chemically driven interactions are also important for the establishment of cross-relationships between microbes and their eukaryotic hosts, in which organisms producing antimicrobial compounds ("antimicrobials"), may protect the host surface against over colonisation in return for a nutrient rich environment. As is the case for bioactive discovery in general, progress in the detection and characterization of marine microbial bioactives has been limited by a number of obstacles, such as unsuitable culture conditions, laborious purification processes, and a lack of de-replication. However many of these limitations are now being overcome due to improved microbial cultivation techniques, microbial (meta-) genomic analysis and novel sensitive analytical tools for structural elucidation. Here we discuss how these technical advances, together with a better understanding of microbial and chemical ecology, will inevitably translate into an increase in the discovery and development of novel drugs from marine microbial sources in the future.

Original languageEnglish
Pages (from-to)438-459
Number of pages22
JournalMarine Drugs
Volume8
Issue number3
DOIs
Publication statusPublished - 2010
Externally publishedYes

Bibliographical note

Copyright the Author(s) 2010. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.

Fingerprint

Dive into the research topics of 'Development of novel drugs from marine surface associated microorganisms'. Together they form a unique fingerprint.

Cite this