TY - JOUR
T1 - Diagnosing barren plateaus with tools from quantum optimal control
AU - Larocca, Martin
AU - Czarnik, Piotr
AU - Sharma, Kunal
AU - Muraleedharan, Gopikrishnan
AU - Coles, Patrick J.
AU - Cerezo, M.
N1 - Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.
PY - 2022/9
Y1 - 2022/9
N2 - Variational Quantum Algorithms (VQAs) have received considerable attention due to their potential for achieving near-term quantum advantage. However, more work is needed to understand their scalability. One known scaling result for VQAs is barren plateaus, where certain circumstances lead to exponentially vanishing gradients. It is common folklore that problem-inspired ansatzes avoid barren plateaus, but in fact, very little is known about their gradient scaling. In this work we employ tools from quantum optimal control to develop a framework that can diagnose the presence or absence of barren plateaus for problem-inspired ansatzes. Such ansatzes include the Quantum Alternating Operator Ansatz (QAOA), the Hamiltonian Variational Ansatz (HVA), and others. With our framework, we prove that avoiding barren plateaus for these ansatzes is not always guaranteed. Specifically, we show that the gradient scaling of the VQA depends on the degree of controllability of the system, and hence can be diagnosed through the dynamical Lie algebra g obtained from the generators of the ansatz. We analyze the existence of barren plateaus in QAOA and HVA ansatzes, and we highlight the role of the input state, as different initial states can lead to the presence or absence of barren plateaus. Taken together, our results provide a framework for trainability-aware ansatz design strategies that do not come at the cost of extra quantum resources. Moreover, we prove no-go results for obtaining ground states with variational ansatzes for controllable system such as spin glasses. Our work establishes a link between the existence of barren plateaus and the scaling of the dimension of g.
AB - Variational Quantum Algorithms (VQAs) have received considerable attention due to their potential for achieving near-term quantum advantage. However, more work is needed to understand their scalability. One known scaling result for VQAs is barren plateaus, where certain circumstances lead to exponentially vanishing gradients. It is common folklore that problem-inspired ansatzes avoid barren plateaus, but in fact, very little is known about their gradient scaling. In this work we employ tools from quantum optimal control to develop a framework that can diagnose the presence or absence of barren plateaus for problem-inspired ansatzes. Such ansatzes include the Quantum Alternating Operator Ansatz (QAOA), the Hamiltonian Variational Ansatz (HVA), and others. With our framework, we prove that avoiding barren plateaus for these ansatzes is not always guaranteed. Specifically, we show that the gradient scaling of the VQA depends on the degree of controllability of the system, and hence can be diagnosed through the dynamical Lie algebra g obtained from the generators of the ansatz. We analyze the existence of barren plateaus in QAOA and HVA ansatzes, and we highlight the role of the input state, as different initial states can lead to the presence or absence of barren plateaus. Taken together, our results provide a framework for trainability-aware ansatz design strategies that do not come at the cost of extra quantum resources. Moreover, we prove no-go results for obtaining ground states with variational ansatzes for controllable system such as spin glasses. Our work establishes a link between the existence of barren plateaus and the scaling of the dimension of g.
UR - http://www.scopus.com/inward/record.url?scp=85146127204&partnerID=8YFLogxK
U2 - 10.22331/q-2022-09-29-824
DO - 10.22331/q-2022-09-29-824
M3 - Article
SN - 2521-327X
VL - 6
SP - 1
EP - 41
JO - Quantum
JF - Quantum
M1 - 824
ER -