TY - JOUR
T1 - Diamond formation and source carbonation
T2 - Mineral associations in diamonds from Namibia
AU - Leost, I.
AU - Stachel, T.
AU - Brey, G. P.
AU - Harris, J. W.
AU - Ryabchikov, I. D.
PY - 2003/4
Y1 - 2003/4
N2 - Mineral inclusions in diamonds from Namibia document a range of mantle sources, including eclogitic, websteritic and peridotitic parageneses. Based on unusual textural features a group of inclusions showing websteritic, peridotitic and transitional chemical features is assigned to an 'undetermined suite' (12% of the studied diamonds). The mutual characteristic of this group is the occurrence of lamellar intergrowths of clinopyroxene and orthopyroxene. In addition, the 'undetermined suite' is associated with a number of uncommon phases: in one diamond MgCO3 is enclosed by clinopyroxene. Other minerals that form touching inclusions with the pyroxene lamellae are (1 a SiO2 phase observed in three diamonds, together with CaCO3 in one of them, (2) phlogopite and a Cr-rich 'titanate' (probably lindsleyite). The inclusions document a metamorphic path of decreasing pressures and temperatures after entrapment in diamond. First, homogeneous low-Ca clinopyroxenes were entrapped at high temperatures. They subsequently exsolved orthopyroxene and probably also SiO2 (coesite) on cooling along a P,T trajectory that did not allow garnet to be exsolved as well. Phlogopite, carbonates and LIMA phases are the result of overprint of a peridotitic source rock by a carbon-rich agent. The resulting unusual, olivine-free mineral association and the host diamonds are interpreted as products of extensive carbonation of the peridotite.
AB - Mineral inclusions in diamonds from Namibia document a range of mantle sources, including eclogitic, websteritic and peridotitic parageneses. Based on unusual textural features a group of inclusions showing websteritic, peridotitic and transitional chemical features is assigned to an 'undetermined suite' (12% of the studied diamonds). The mutual characteristic of this group is the occurrence of lamellar intergrowths of clinopyroxene and orthopyroxene. In addition, the 'undetermined suite' is associated with a number of uncommon phases: in one diamond MgCO3 is enclosed by clinopyroxene. Other minerals that form touching inclusions with the pyroxene lamellae are (1 a SiO2 phase observed in three diamonds, together with CaCO3 in one of them, (2) phlogopite and a Cr-rich 'titanate' (probably lindsleyite). The inclusions document a metamorphic path of decreasing pressures and temperatures after entrapment in diamond. First, homogeneous low-Ca clinopyroxenes were entrapped at high temperatures. They subsequently exsolved orthopyroxene and probably also SiO2 (coesite) on cooling along a P,T trajectory that did not allow garnet to be exsolved as well. Phlogopite, carbonates and LIMA phases are the result of overprint of a peridotitic source rock by a carbon-rich agent. The resulting unusual, olivine-free mineral association and the host diamonds are interpreted as products of extensive carbonation of the peridotite.
UR - http://www.scopus.com/inward/record.url?scp=0038079441&partnerID=8YFLogxK
M3 - Article
AN - SCOPUS:0038079441
SN - 0010-7999
VL - 145
SP - 15
EP - 24
JO - Contributions to Mineralogy and Petrology
JF - Contributions to Mineralogy and Petrology
IS - 1
ER -