Diamondiferous lithospheric roots along the western margin of the Kalahari Craton - The peridotitic inclusion suite in diamonds from Orapa and Jwaneng

T. Stachel*, K. S. Viljoen, P. McDade, J. W. Harris

*Corresponding author for this work

Research output: Contribution to journalArticle

35 Citations (Scopus)

Abstract

The Orapa and Jwaneng kimberlites are located along the western margin of the Kalahari Craton and the prevalence of eclogitic over peridotitic diamonds in both mines has recently been linked to lower P-wave velocities in the deep mantle lithosphere (relative to the bulk of the craton) to suggest a diamond formation event prompted by mid-Proterozoic growth and modification of preexisting Archean lithosphere (Shirey et al. 2002). Here we study peridotitic diamonds from both mines, with an emphasis on the style of metasomatic source enrichment, to evaluate their relationship with this major eclogitic diamond formation event. In their major element chemistry, the peridotitic inclusions compare well with a world-wide database but reveal differences to diamond sources located in the interior of the Western Terrane of the Kaapvaal block, where the classical mines in the Kimberley region are located. The most striking difference is the relative paucity of low-Ca ( <2 wt% CaO in garnet) harzburgites and a low ratio of harzburgitic to lherzolitic garnets (2:1). This suggests that lithospheric mantle accreted to the rim of the Zimbabwe and Kaapvaal blocks was overall chemically less depleted. Alternatively, this more fertile signature may be assigned to stronger metasomatic re-enrichment but the trace element signature of garnet inclusions is not in favor of strong enrichment in major elements. For both mines the majority of lherzolitic and harzburgitic garnet inclusions are characterized by moderately sinusoidal REEN patterns and low Ti, Zr and Y contents, indicative of a metasomatic agent with very high LREE/HREE and low HFSE. This is consistent with metasomatism by a CHO-fluid or, as modeled by Burgess and Harte (2003), a highly fractionated, low-volume silicate melt from the MORB-source. In both cases, changes in the major element chemistry of the affected rocks will be limited. In a few garnets from Orapa preferential MREE enrichment is observed, suggesting that the percolating fluid/melt fractionated a LREE-phyllic phase (such as crichtonite). The overall moderate degree of metasomatism reflected by the inclusion chemistry is in stark contrast to lithospheric sections for Orapa and Jwaneng based on mantle xenocrysts and xenoliths, revealing extensive mantle metasomatism (Griffin et al. 2003). This suggests that the formation of peridotitic diamonds predates the intensive modification of the subcratonic lithosphere during Proterozoic rifting and compression, implying that diamonds may survive major tectonothermal events.

Original languageEnglish
Pages (from-to)32-47
Number of pages16
JournalContributions to Mineralogy and Petrology
Volume147
Issue number1
DOIs
Publication statusPublished - Mar 2004
Externally publishedYes

Fingerprint Dive into the research topics of 'Diamondiferous lithospheric roots along the western margin of the Kalahari Craton - The peridotitic inclusion suite in diamonds from Orapa and Jwaneng'. Together they form a unique fingerprint.

  • Cite this