Differentially private release of high-dimensional datasets using the Gaussian copula

Hassan Jameel Asghar, Ming Ding, Thierry Rakotoarivelo, Sirine Mrabet, Dali Kaafar

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)
284 Downloads (Pure)


We propose a generic mechanism to efficiently release differentially private synthetic versions of high-dimensional datasets with high utility. The core technique in our mechanism is the use of copulas, which are functions representing dependencies among random variables with a multivariate distribution. Specifically, we use the Gaussian copula to define dependencies of attributes in the input dataset, whose rows are modelled as samples from an unknown multivariate distribution, and then sample synthetic records through this copula. Despite the inherently numerical nature of Gaussian correlations we construct a method that is applicable to both numerical and categorical attributes alike. Our mechanism is efficient in that it only takes time proportional to the square of the number of attributes in the dataset. We propose a differentially private way of constructing the Gaussian copula without compromising computational efficiency. Through experiments on three real-world datasets, we show that we can obtain highly accurate answers to the set of all one-way marginal, and two-and three-way positive conjunction queries, with 99% of the query answers having absolute (fractional) error rates between 0.01 to 3%. Furthermore, for a majority of two-way and three-way queries, we outperform independent noise addition through the well-known Laplace and Gaussian mechanisms. In terms of computational time we demonstrate that our mechanism can output synthetic datasets in around 6 minutes 47 seconds on average with an input dataset of about 200 binary attributes and more than 32,000 rows, and about 2 hours 30 mins to execute a much larger dataset of about 700 binary attributes and more than 5 million rows. To further demonstrate scalability, we ran the mechanism on larger (artificial) datasets with 1,000 and 2,000 binary attributes (and 5 million rows) obtaining synthetic outputs in approximately 6 and 19 hours, respectively. These are highly feasible times for synthetic datasets, which are one-off releases.

Original languageEnglish
Pages (from-to)1-38
Number of pages38
JournalJournal of Privacy and Confidentiality
Issue number2
Publication statusPublished - 2020

Bibliographical note

Copyright the Author(s) 2020. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.


  • Differential privacy
  • High dimensional
  • Synthetic data
  • Copula


Dive into the research topics of 'Differentially private release of high-dimensional datasets using the Gaussian copula'. Together they form a unique fingerprint.

Cite this