Abstract
The direct electrochemistry of human, bovine and porcine cytochrome P450c17 (CYP17) has been examined on an edge-oriented pyrolytic graphite electrode. The recombinant protein was immobilized on an electrode modified with a surfactant to simulate the environment of a biological membrane, and hence physiological electron-transfer conditions. The P450 enzymes all retained 'electron-transfer' activity while immobilized at the electrode surface as assessed by the presence of catalytic signals under aerobic conditions. The redox potentials for porcine P450c17 were more positive (anodic) than both the human and bovine forms, perhaps reflecting the differences in substrate specificity for these species. In addition, these enzymes were all influenced by pH, consistent with a single proton associated with the single electron-transfer event. Ionic strength of the buffer medium also shifted the redox potentials towards positive, suggesting that electrostatic forces contribute to the protein environment required for the electron-transfer process. The effect of substrate on the redox potential for each P450c17 was measured in the presence of pregnenolone, progesterone, 17α-hydroxypregnenolone and 17α-hydroxyprogesterone. However, no influence on the redox parameters was observed.
Original language | English |
---|---|
Pages (from-to) | 349-359 |
Number of pages | 11 |
Journal | Journal of Molecular Endocrinology |
Volume | 36 |
Issue number | 2 |
DOIs | |
Publication status | Published - Apr 2006 |
Externally published | Yes |