Disassortative mating and the maintenance of sexual polymorphism in painted maple

David L. Field*, Spencer C. H. Barrett

*Corresponding author for this work

Research output: Contribution to journalReview articlepeer-review

5 Citations (Scopus)


Since Darwin’s pioneering research on plant reproductive biology (e.g. Darwin 1877), understanding the mechanisms maintaining the diverse sexual strategies of plants has remained an important challenge for evolutionary biologists. In some species, populations are sexually polymorphic and contain two or more mating morphs (sex phenotypes). Differences in morphology or phenology among the morphs influence patterns of non-random mating. In these populations, negative frequency-dependent selection arising from disassortative (intermorph) mating is usually required for the evolutionary maintenance of sexual polymorphism, but few studies have demonstrated the required patterns of non-random mating. In the current issue of Molecular Ecology, Shang et al. (2012) make an important contribution to our understanding of how disassortative mating influences sex phenotype ratios in Acer pictum subsp. mono (painted maple), a heterodichogamous, deciduous tree of eastern China. They monitored sex expression in 97 adults and used paternity analysis of open-pollinated seed to examine disassortative mating among three sex phenotypes. Using a deterministic ‘pollen transfer’ model, Shang et al. present convincing evidence that differences in the degree of disassortative mating in progeny arrays of the sex phenotypes can explain their uneven frequencies in the adult population. This study provides a useful example of how the deployment of genetic markers, demographic monitoring and modelling can be integrated to investigate the maintenance of sexual diversity in plants.

Original languageEnglish
Pages (from-to)3640-3643
Number of pages4
JournalMolecular Ecology
Issue number15
Early online date17 Jul 2012
Publication statusPublished - Aug 2012
Externally publishedYes


  • Acer
  • dichogamy
  • heterodichogamy
  • paternity analysis
  • plants
  • sexual polymorphism


Dive into the research topics of 'Disassortative mating and the maintenance of sexual polymorphism in painted maple'. Together they form a unique fingerprint.

Cite this