Abstract
We report the discovery of a circumbinary disk around the Herbig Ae/Be system V892 Tau. Our detailed midinfrared images were made using segment-tilting interferometry on the Keck I telescope and reveal an asymmetric disk inclined at ~60° with an inner hole diameter of 250 mas (35 AU), approximately 5 times larger than the apparent separation of the binary components. In addition, we report a new measurement along the binary orbit using near-infrared Keck aperture masking, allowing a crude estimate of orbital parameters and the system mass for the first time. The size of the inner hole appears to be consistent with the minimum size prediction from tidal truncation theory, bearing a resemblance to the recently unmasked binary CoKu Tau/4. Our results have motivated a reanalysis of the system spectral energy distribution, concluding the luminosity of this system has been severely underestimated. With further study and monitoring, V892 Tau should prove a powerful testing ground for both predictions of dynamical models for disk-star interactions in young systems with gas-rich disks and for calibrations of pre-main-sequence tracks for intermediate-mass stars.
Original language | English |
---|---|
Pages (from-to) | L97-L100 |
Number of pages | 4 |
Journal | Astrophysical Journal |
Volume | 681 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2008 |
Externally published | Yes |